Skip to main content
Log in

Lambda Perturbations of Keplerian Orbits in the Expanding Universe

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

To estimate the influence of “dark energy” on Keplerian orbits, we solve the general-relativistic equations of motion of a test particle in the field of a pointlike mass embedded in the cosmological background formed by the cosmological constant with realistic cosmological Robertson–Walker asymptotics at infinity. It is found that under certain relations between three crucial parameters of the problem—the initial radius of the orbit, the Schwarzschild and de Sitter radii—a specific secular perturbation caused by \(\Lambda\)-term becomes significant, i.e., can reach the rate of the standard Hubble flow. This fact is interesting both by itself and may have important consequences for the long-term dynamics of planets and stellar binary systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. It was emphasized for the first time by Balaguera-Antolínez et al. [13] that the specific interplay between \(r_{g}\) and \(r_{\Lambda}\) can result in a manifestation of the \(\Lambda\)-term effects at spatial scales much less than \(r_{\Lambda}\); but that consideration was performed for the static Kottler metric (1). Besides, “small-scale” cosmological effects were also found in the collapsing matter overdensities (see, e.g., [22] and references therein); but this analysis was performed with models of “dynamical” DE and is therefore irrelevant to the present study.

  2. For example, in the Earth–Moon system, \(r^{*}_{g}=r_{g}/R_{0}\sim 10^{-11}\) and \(r^{*}_{\Lambda}=r_{\Lambda}/R_{0}\sim 10^{18}\).

  3. A somewhat greater value, \(\dot{R}_{\textrm{rot}}=2.53\) cm/yr, used in our earlier work [11], was obtained from the data on the Earth’s deceleration rate corrected for observations of the ancient solar eclipses, which could be hardly reliable.

  4. Yet another option might be DE mediated by the quantum uncertainty relation, as suggested in our recent paper [30]. In that case, it is unclear if the effective (i.e., uncertainty-mediated) \(\Lambda\)-term will contribute to the small-scale dynamics of celestial bodies.

REFERENCES

  1. G. C. McVittie, “The mass-particle in an expanding universe,” Mon. Not. Royal Astron. Soc. 93, 325 (1933).

    Article  ADS  Google Scholar 

  2. A. Einstein and E. G. Straus, “The influence of the expansion of space on the gravitation fields surrounding the individual stars,” Rev. Mod. Phys. 17, 120 (1945).

    Article  ADS  MathSciNet  Google Scholar 

  3. P. D. Noerdlinger and V. Petrosian, “The effect of cosmological expansion on self-gravitating ensembles of particles,” Astrophys. J. 168, 1 (1971).

    Article  ADS  Google Scholar 

  4. C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (W.H. Freeman & Co., San Francisco, 1973).

    Google Scholar 

  5. R. Gautreau, “Curvature coordinates in cosmology,” Phys. Rev. D 29, 186 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  6. J. L. Anderson, “Multiparticle dynamics in an expanding universe,” Phys. Rev. Lett. 75, 3602 (1995).

    Article  ADS  Google Scholar 

  7. J. F. Cardona and J. M. Tejeiro, “Can interplanetary measures bound the cosmological constant?,” Astrophys. J. 493, 52 (1998).

    Article  ADS  Google Scholar 

  8. F. I. Cooperstock, V. Faraoni, and D. N. Vollick, “The influence of the cosmological expansion on local systems,” Astrophys. J. 503, 61 (1998).

    Article  ADS  Google Scholar 

  9. Z. Stuchlík and S. Hledík, “Some properties of the Schwarzschild–de Sitter and Schwarzschild–anti-de Sitter spacetimes,” Phys. Rev. D 60, 044006 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  10. A. Domínguez and J. Gaite, “Influence of the cosmological expansion on small systems,” Europhys. Lett. 55, 458 (2001).

    Article  ADS  Google Scholar 

  11. Yu. V. Dumin, “A new application of the lunar laser retroreflectors: Searching for the local Hubble expansion,” Adv. Space Res. 31, 2461 (2003).

    Article  ADS  Google Scholar 

  12. A. Chernin, P. Teerikorpi, and Yu. Baryshev, “Why is the Hubble flow so quiet?,” Adv. Space Res. 31, 459 (2003).

    Article  ADS  Google Scholar 

  13. A. Balaguera-Antolínez, C. G. Böhmer, and M. Nowakowski, “Scales set by the cosmological constant,” Class. Quantum Grav. 23, 485 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  14. L. Iorio, “Can solar system observations tell us something about the cosmological constant?,” Int. J. Mod. Phys. D 15, 473 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  15. V. Kagramanova, J. Kunz, and C. Lämmerzahl, “Solar system effects in Schwarzschild–de Sitter space–time,” Phys. Lett. B 634, 465 (2006).

    Article  ADS  Google Scholar 

  16. P. Jetzer and M. Sereno, “Two-body problem with the cosmological constant and observational constraints,” Phys. Rev. D 73, 044015 (2006).

    Article  ADS  Google Scholar 

  17. A. Balaguera-Antolínez and M. Nowakowski, “From global to local dynamics: effects of the expansion on astrophysical structures,” Class. Quantum Grav. 24, 2677 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  18. R. Nandra, A. N. Lasenby, and M. P. Hobson, “The effect of an expanding universe on massive objects,” Mon. Not. Royal Astron. Soc. 422, 2945 (2012).

    Article  ADS  Google Scholar 

  19. W. B. Bonnor, “Local dynamics and the expansion of the universe,” Gen. Rel. Grav. 32, 1005 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  20. F. Kottler, “Über die physikalischen Grundlagen der Einsteinschen Gravitationstheorie,” Ann. Phys. (Leipzig) 56, 401 (1918).

    Article  ADS  Google Scholar 

  21. D. Kramer, H. Stephani, M. MacCallum, and E. Herlt, Exact Solutions of the Einsteins Field Equations (Deutscher Verlag der Wissenschaften, Berlin, 1980).

    MATH  Google Scholar 

  22. D. F. Mota and C. van de Bruck, “On the spherical collapse model in dark energy cosmologies,” Astron. Astrophys. 421, 71 (2004).

    Article  ADS  Google Scholar 

  23. Yu. V. Dumin, “Comment on Progress in lunar laser ranging tests of relativistic gravity,” Phys. Rev. Lett. 98, 059001 (2007).

    Article  ADS  Google Scholar 

  24. K. Nordtvedt, “30 years of lunar laser ranging and the gravitational interaction,” Class. Quant. Grav. 16, A101 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  25. J. O. Dickey, P. L. Bender, J. E. Faller, X. X. Newhall, R. L. Ricklefs, J. G. Ries, P. J. Shelus, C. Veillet, A. L. Whipple, J. R. Wiant, J. G. Williams, and C. F. Yoder, “Lunar laser ranging: A continuing legacy of the Apollo program,” Science 265, 482 (1994).

    Article  ADS  Google Scholar 

  26. N. S. Sidorenkov, Physics of the Earth’s Rotation Instabilities (Nauka-Fizmatlit, Moscow, 2002, in Russian).

    Google Scholar 

  27. Yu. V. Dumin, “Testing the dark-energy-dominated cosmology by the solar-system experiments,” in: Proc. 11th Marcel Grossmann Meeting on General Relativity, ed. by H. Kleinert, R. T. Jantzen, and R. Ruffini (World Scientific, Singapore, 2008), p. 1752.

  28. E. V.  Pitjeva, “High-precision ephemerides of planets—EPM and determination of some astronomical constants,” Solar System Res. 39, 176 (2005).

    Article  ADS  Google Scholar 

  29. E. V. Pitjeva, “Relativistic effects and solar oblateness from radar observations of planets and spacecraft,” Astron. Lett. 31, 340 (2005).

    Article  ADS  Google Scholar 

  30. Yu. V.  Dumin, “A unified model of dark energy based on the Mandelstam–Tamm uncertainty relation,” Grav. Cosmol. 25, 169 (2019).

    Article  ADS  MathSciNet  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to Yu. Baryshev, N. Capitaine, M.L. Fil’chenkov, S.S. Gerstein, C. Lämmerzahl, S.A. Klioner, S.M. Kopeikin, J. Müller, K. Nordtvedt, M. Nowakowski, E.V. Pitjeva, and A.V. Toporensky for valuable discussions and critical comments. I am also grateful to Wilhelm and Else Heraeus-Stiftung for the opportunity to present this work at a few workshops.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Dumin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dumin, Y.V. Lambda Perturbations of Keplerian Orbits in the Expanding Universe. Gravit. Cosmol. 26, 307–315 (2020). https://doi.org/10.1134/S0202289320040040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289320040040

Navigation