Skip to main content
Log in

Review on Dark Energy Models

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

Based on quantum mechanics and general relativity, Karolyhazy proposed a generalization to the well-known Heisenberg uncertainty relation in which the energy density of quantum fluctuations of space-time plays a crucial role. Later on, various holographic DE models were suggested, in which the Hubble scale (size) and the age of the universe were assumed as measures for the largest infrared cutoff satisfying the holographic principle and energy bounds assuring applicability of quantum field theory. We review various models based on the holographic principle and the Karolyhazy relation and compare these to the space-time foam and superconducting DE models. We analyze their (in)stability against cosmological perturbation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Geoff Brumfiel, Nature 448, 245 (2007).

    Article  ADS  Google Scholar 

  2. S. Weinberg, Rev. Mod. Phys. 61, 1 (1989).

    Article  ADS  Google Scholar 

  3. A. G. Riess, et al., [Supernova search team collaboration], Astron. J. 116, 1009 (1998); S. Perlmutter, et al. [Supernova cosmology project collaboration], Astroph. J. 517, 565 (1999).

    Article  ADS  Google Scholar 

  4. J. D. Barrow and D. J. Shaw, Gen. Rel. Grav. 43, 2555 (2011).

    Article  ADS  Google Scholar 

  5. S. M. Carroll, W. H. Press, and E. L. Turner, Ann. Rev. Astron. Astrophys. 30, 499–542 (1992).

    Article  ADS  Google Scholar 

  6. N. Aghanim et al. (Planck Collaboration), “Planck 2018 results. VI. Cosmological parameters,” arXiv: 1807.06209

  7. Adam G. Riess et al., Astron. J. 116, 1009–1038 (1998).

    Article  ADS  Google Scholar 

  8. B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 116, 061102 (2016).

    Article  MathSciNet  ADS  Google Scholar 

  9. L. A. Somlai and M. Vasuth, Int. J. Mod. Phys. D 27, 1850004 (2017); arXiv: 1606.09465.

    Article  Google Scholar 

  10. A. Ashtekar, B. Bonga, and A. Kesavan, Phys. Rev. Lett. 116, 051101 (2016).

    Article  ADS  Google Scholar 

  11. A. Ashtekar, Phys. Rev. Lett. 57, 2244 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  12. Simon D. M. White, Rep. Prog. Phys. 70, 883 (2007); arXiv: 0704.2291.

    Article  ADS  Google Scholar 

  13. I. Shipsey et al., “’Particle Physics and Astrophysics—A whitepaper in response to a call to the Astronomy and Astrophysics Community from the Committee on Astro2010 for State of the Profession Position Papers”, arXiv: 0904.0595.

  14. C. L. Bennett, et al., Astrophys. J. Suppl. 148, 1 (2003); D. N. Spergel, et al., Astrophys. J. Suppl.148, 175 (2003); H. V. P. Peiris, et al., Astrophys. J. Suppl. 148, 213 (2003).

    Article  ADS  Google Scholar 

  15. P. Horava and D. Minic, Phys. Rev. Lett. 161085 (2000).

    Google Scholar 

  16. T. Abbott, et al. (DES Collaboration), MNRAS 460, 1270 (2016); arXiv: 1601.00329.

    Article  ADS  Google Scholar 

  17. Shuang Wang, Yi Wang, and Miao Li, Phys. Rep. 696, 1 (2017); arXiv: 1612.00345.

    Article  MathSciNet  ADS  Google Scholar 

  18. R. R. Caldwell, R. Dave, and P. J. Steinhardt, Phys. Rev. Lett. 80, 1582 (1998).

    Article  ADS  Google Scholar 

  19. C. Wetterich, Nucl. Phys. B 302, 668 (1988).

    Article  ADS  Google Scholar 

  20. P. J. E. Peebles and B. Ratra, Astrophys. J. 325, L17 (1988).

    Article  ADS  Google Scholar 

  21. B. Ratra and P. J. E. Peebles, Phys. Rev. D 37, 3406 (1988).

    Article  ADS  Google Scholar 

  22. P. J. Steinhardt, L. M. Wang, and I. Zlatev, Phys. Rev. D 59, 123504 (1999).

    Article  ADS  Google Scholar 

  23. I. Zlatev and P. J. Steinhardt, Phys. Lett. B 459, 570 (1999).

    Article  ADS  Google Scholar 

  24. R. R. Caldwell, Phys. Lett. B 545, 23 (2002).

    Article  ADS  Google Scholar 

  25. R. R. Caldwell, M. Kamionkowski, and N. N. Weinberg, Phys. Rev. Lett. 91, 071301 (2003).

    Article  ADS  Google Scholar 

  26. S. M. Carroll, M. Hoffman, and M. Trodden, Phys. Rev. D 68, 023509 (2003).

    Article  ADS  Google Scholar 

  27. J. M. Cline, S. Y. Jeon, and G. D. Moore, Phys. Rev. D 70, 043543 (2004).

    Article  ADS  Google Scholar 

  28. C. Armendariz-Picon, V. Mukhanov, and P. J. Steinhardt, Phys. Rev. Lett. 85, 4438 (2000); Phys. Rev. D 63, 103510 (2001).

    Article  ADS  Google Scholar 

  29. T. Chiba, T. Okabe, and M. Yamaguchi, Phys. Rev. D 62, 023511 (2000).

    Article  ADS  Google Scholar 

  30. M. Malquarti, E. J. Copeland, and A. R. Liddle, Phys. Rev. D 68, 023512 (2003).

    Article  ADS  Google Scholar 

  31. M. Malquarti, E. J. Copeland, A. R. Liddle, and M. Trodden, Phys. Rev. D 67, 123503 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  32. H. Wei and R. G. Cai, Phys. Rev. D 71, 043504 (2005).

    Article  ADS  Google Scholar 

  33. B. Feng, X. L. Wang, and X. M. Zhang, Phys. Lett. B 607, 35 (2005).

    Article  ADS  Google Scholar 

  34. Z. K. Guo, Y. S. Piao, X. M. Zhang, and Y. Z. Zhang, Phys. Lett. B 608, 177 (2005).

    Article  ADS  Google Scholar 

  35. H. Wei and R. G. Cai, Phys. Lett. B 634, 9 (2006).

    Article  ADS  Google Scholar 

  36. Z. K. Guo, Y. S. Piao, X. M. Zhang, and Y. Z. Zhang, Phys. Rev. D 74, 127304 (2006).

    Article  ADS  Google Scholar 

  37. X. F. Zhang, H. Li, Y. S. Piao, and X. M. Zhang, Mod. Phys. Lett. A 21, 231 (2006).

    Article  ADS  Google Scholar 

  38. M. Z. Li, B. Feng, and X. M. Zhang, J. Cosmol. Astropart. Phys. 12, 002 (2005).

    Article  ADS  Google Scholar 

  39. X. F. Zhang and T. T. Qiu, Phys. Lett. B 642, 187 (2006).

    Article  ADS  Google Scholar 

  40. Y. F. Cai, H. Li, Y. S. Piao, and X. M. Zhang, Phys. Lett. B 646, 141 (2007).

    Article  MathSciNet  ADS  Google Scholar 

  41. Y. F. Cai, M. Z. Li, J. X. Lu, Y. S. Piao, T. T. Qiu, and X. M. Zhang, Phys. Lett. B 651, 1 (2007).

    Article  MathSciNet  ADS  Google Scholar 

  42. R. Lazkoz and G. Leon, Phys. Lett. B 638, 303 (2006).

    Article  ADS  Google Scholar 

  43. R. Lazkoz, G. Leon, and I. Quiros, Phys. Lett. B 649, 103 (2007).

    Article  MathSciNet  ADS  Google Scholar 

  44. H. Wei, R. G. Cai, and D. F. Zeng, Class. Quantum Grav. 22, 3189 (2005).

    Article  ADS  Google Scholar 

  45. H. Wei and R. G. Cai, Phys. Rev. D 72, 123507 (2005).

    Article  ADS  Google Scholar 

  46. M. Alimohammadi and H. Mohseni Sadjadi, Phys. Rev. D 73, 083527 (2006).

    Article  ADS  Google Scholar 

  47. W. Zhao and Y. Zhang, Phys. Rev. D 73, 123509 (2006).

    Article  ADS  Google Scholar 

  48. H. Wei, N. N. Tang, and S. N. Zhang, Phys. Rev. D 75, 043009 (2007).

    Article  ADS  Google Scholar 

  49. A. Sen, JHEP 0207, 065 (2002); hep-th/0203265.

    Article  ADS  Google Scholar 

  50. T. Padmanabhan, Phys. Rev. D 66, 021301 (2002); hep-th/0204150.

    Article  ADS  Google Scholar 

  51. J. Zhang, X. Zhang, and H. Liu, Phys. Lett. B 651, 84 (2007); arXiv: 0706.1185.

    Article  MathSciNet  ADS  Google Scholar 

  52. N. Arkani-Hamed, H. C. Cheng, M. A. Luty, and S. Mukohyama, JHEP 0405, 074 (2004); hep-th/0312099.

    Article  ADS  Google Scholar 

  53. F. Piazza and S. Tsujikawa, JCAP 0407, 004 (2004); hep-th/0405054.

    Article  ADS  Google Scholar 

  54. X. Zhang, Phys. Rev. D 74, 103505 (2006); astro-ph/0609699.

    Article  ADS  Google Scholar 

  55. J. Zhang, X. Zhang, and H. Liu, Mod. Phys. Lett. A 23, 139 (2008); astro-ph/0612642.

    Article  ADS  Google Scholar 

  56. X. Zhang, Phys. Rev. D 79, 103509 (2009); arXiv: 0901.2262.

    Article  ADS  Google Scholar 

  57. G. t Hooft, Salamfest 0284–296 (1993); gr-qc/9310026.

    Google Scholar 

  58. L. Susskind, J. Math. Phys. (N.Y.) 36, 6377 (1995).

    Article  ADS  Google Scholar 

  59. R. Bousso, Rev. Mod. Phys. 74, 825 (2002).

    Article  ADS  Google Scholar 

  60. J. D. Bekenstein, Phys. Rev. D 7, 2333 (1973); J. D. Bekenstein, Phys. Rev. D 9, 3292 (1974); J. D. Bekenstein, Phys. Rev. D 23, 287 (1981); J. D. Bekenstein, Phys. Rev. D 49, 1912 (1994).

    Article  MathSciNet  ADS  Google Scholar 

  61. S. W. Hawking, Commun. Math. Phys. 43, 199 (1975); S. W. Hawking, Commun. Math. Phys. 46, 206 (1976); S. W. Hawking, Phys. Rev. D 13, 191 (1976).

    Article  ADS  Google Scholar 

  62. A. N. Tawfik and A. M. Diab, Int. J. Mod. Phys. A 30, 1550059 (2015); arXiv: 1502.04562.

    Article  Google Scholar 

  63. A. N. Tawfik and E. A. El Dahab, Int. J. Mod. Phys. A 30, 1550030 (2015); arXiv: 1501.01286.

    Article  ADS  Google Scholar 

  64. A. G. Cohen, D. B. Kaplan, and A. E. Nelson, Phys. Rev. Lett. 82, 4971 (1999).

    Article  MathSciNet  ADS  Google Scholar 

  65. M. Li, Phys. Lett. B 603, 1 (2004).

    Article  ADS  Google Scholar 

  66. S. D. H. Hsu, Phys. Lett. B 594, 13 (2004).

    Article  ADS  Google Scholar 

  67. W. McCrea, Proc. Roy. Soc. A 206, 562 (1951).

    Article  ADS  Google Scholar 

  68. A. F. Ali and A. Tawfik, Adv. High Energy Phys. 2013, 126528 (2013); arXiv: 1301.3508 [gr-qc]

    Google Scholar 

  69. S. Thomas, Phys. Rev. Lett. 89, 081301 (2002).

    Article  MathSciNet  ADS  Google Scholar 

  70. R.-G. Cai, Phys. Lett. B 657, 228 (2007).

    Article  MathSciNet  ADS  Google Scholar 

  71. Michael Maziashvili, Phys. Lett. B 652, 165 (2007); arXiv: 0705.0924.

    Article  ADS  Google Scholar 

  72. F. Karolyhazy, Nuovo Cim. A 42, 390 (1966).

    Article  ADS  Google Scholar 

  73. N. Sasakura, Prog. Theor. Phys. 02, 169 (1999); hep-th/9903146.

    Article  ADS  Google Scholar 

  74. Y. J. Ng and H. Van Dam, Mod. Phys. Lett. A 9, 335 (1994).

    Article  ADS  Google Scholar 

  75. W. A. Christiansen, Y. J. Ng, and H. van Dam, Phys. Rev. Lett. 96, 051301 (2006); gr-qc/0508121.

    Article  MathSciNet  ADS  Google Scholar 

  76. M. Arzano, T. W. Kephart, Y J. Ng, Phys. Lett. B 649, 243 (2007).

    Article  MathSciNet  ADS  Google Scholar 

  77. A. N. Tawfik and A. M. Diab, Int. J. Mod. Phys. D 23, 1430025 (2014); arXiv: 1410.0206.

    Article  ADS  Google Scholar 

  78. A. N. Tawfik and A. M. Diab, Rep. Prog. Phys. 78, 126001 (2015); arXiv: 1509.02436.

    Article  ADS  Google Scholar 

  79. Xavier Calmet, Eur. Phys. J. C 54, 501 (2008); hep-th/0701073.

    Article  ADS  Google Scholar 

  80. A. Tawfik, JCAP 1307, 040 (2013); arXiv: 1307.1894 [gr-qc]

    Article  ADS  Google Scholar 

  81. M. Maziashvili, Int. J. Mod. Phys. D 16, 1531 (2007).

    Article  MathSciNet  ADS  Google Scholar 

  82. H. Wei and R.-G. Cai, Phys. Lett. B 660, 113 (2008).

    Article  ADS  Google Scholar 

  83. N. Margolus and L. B. Levitin, Physica D 120, 188 (1998).

    Article  ADS  Google Scholar 

  84. Y. Jack Ng, Entropy 10, 441 (2008).

    Article  MathSciNet  Google Scholar 

  85. Y. X. Chen and Y. Xiao, Phys. Lett. B 666, 371 (2008); arXiv: 0712.3119..

    Article  MathSciNet  ADS  Google Scholar 

  86. Y.J. Ng, Phys. Rev. Lett. 86, 2946 (2001).

    Article  MathSciNet  ADS  Google Scholar 

  87. Yun Soo Myung and Min-Gyun Seo, Phys. Lett. B 671, 435 (2009).

    Article  ADS  Google Scholar 

  88. S. D. Liang and T. Harko, Phys. Rev. D 91, 085042 (2015).

    Article  ADS  Google Scholar 

  89. A. N. Tawfik and H. Magdy, Int. J. Mod. Phys. A 29, 1450152 (2014); arXiv: 1206.0901.

    Article  Google Scholar 

  90. A. N. Tawfik, A. M. Diab, and M. T. Hussein, J. Phys. G 45, 055008 (2018); arXiv: 1604.08174.

    Article  ADS  Google Scholar 

  91. S. D. Hsu, Phys. Lett. B 594, 13 (2004); hep-th/0403052.

    Article  ADS  Google Scholar 

  92. R. Horvat, Phys. Rev. D 70, 087301 (2004); astro-ph/0404204.

    Article  MathSciNet  ADS  Google Scholar 

  93. Y. S. Myung, Phys. Lett. B 652, 223 (2007).

    Article  MathSciNet  ADS  Google Scholar 

  94. V. Sahni, T. D. Saini, A. A. Starobinsky, and U. Alam, JETP Lett. 77, 201 (2003).

    Article  ADS  Google Scholar 

  95. X. Zhang, Int. J. Mod. Phys. D 14, 1597 (2005); astro-ph/0504586.

    Article  ADS  Google Scholar 

  96. M. R. Setare, J. Zhang, and X. Zhang, JCAP 0703, 007 (2007); gr-qc/0611084.

    Article  ADS  Google Scholar 

  97. A. N. Tawfik, A. M. Diab, E. A. El Dahab, and T. Harko, Phys. Rev. D 93, 063526 (2016); 1603.03032.

    Article  MathSciNet  ADS  Google Scholar 

  98. K.Y. Kim, H. W. Lee, and Y.S. Myung, Phys. Lett. B 660, 118 (2008).

    Article  ADS  Google Scholar 

  99. A. Pasqua, S. Chattopadhyay, and I. Khomenko, Int. J. Theor. Phys. 52, 2496 (2013).

    Article  Google Scholar 

  100. V. Fayaz, Astrophys. Space Sci. 361, 86 (2016).

    Article  MathSciNet  ADS  Google Scholar 

  101. S. W. Hawking, Phys. Rev. D 52, 5681 (1995).

    Article  MathSciNet  ADS  Google Scholar 

  102. Luis J. Garay, Phys. Rev. D 58, 124015 (1998).

    Article  MathSciNet  ADS  Google Scholar 

  103. S. W. Hawking, Phys. Rev. D 46, 603 (1992).

    Article  MathSciNet  ADS  Google Scholar 

  104. Li-Xin Li and J. R. Gott III, Phys. Rev. Lett. 80, 2980 (1998).

    Article  ADS  Google Scholar 

  105. Ian H. Redmount and Wai-Mo Suen, Phys. Rev. D 47 R2163–R2167 (1993); gr-qc/9210017.

    Article  ADS  Google Scholar 

  106. Z. Keresztes, L. A. Gergely, T. Harko, and Shi-Dong Liang, Phys. Rev. D 92, 123503 (2015).

    Article  ADS  Google Scholar 

  107. A. Golovnev and A. Klementev, JCAP 02, 033 (2014).

    Article  ADS  Google Scholar 

  108. B. Himmetoglu, C. R. Contaldi, and M. Peloso, Phys. Rev. Lett. 102, 111301 (2009); B. Himmetoglu, C. R. Contaldi, and M. Peloso, Phys. Rev. D 80, 123530 (2009).

    Article  ADS  Google Scholar 

  109. A. Golovnev, Phys. Rev. D 81, 023514 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgment

AT is very grateful to Tibeiu Harko for the stimulating discussions on the (in)stability of the holographic and agegraphic DE models and proposing to compare them with superconducting DE models.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdel Nasser Tawfik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tawfik, A.N., El Dahab, E.A. Review on Dark Energy Models. Gravit. Cosmol. 25, 103–115 (2019). https://doi.org/10.1134/S0202289319020154

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289319020154

Navigation