Advertisement

Gravitation and Cosmology

, Volume 25, Issue 1, pp 82–89 | Cite as

Anisotropic Dark Energy Models with Hybrid Expansion Law in Lyra’s Manifold

  • M. Saratchandra SinghEmail author
  • S. Surendra SinghEmail author
Article
  • 17 Downloads

Abstract

Field equations of the locally rotationally symmetric (LRS) Bianchi type-I metric with anisotropic fluid are constructed in the framework of Lyra’s manifold. By assuming a hybrid expansion law (HEL) for the average scale factor that yields power-law and exponential-law cosmologies, we model Bianchi type-I space time for the time-dependent displacement field which is proportional to a power-law form of the Hubble parameter. The model provides an elegant description of the transition from cosmic deceleration to acceleration. We discuss the physical behaviors of the derived models with observational constraints applied to late-time acceleration as well as early stages of the Universe. It is observed that HEL Bianchi type I universe is anisotropic at early stage of evolution and becomes isotropic at late times.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. A. S. Lima, Phys. Rev. D 54, 2571 (1996).ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    S. Perlmutter et al., Astrophys. J. 517, 565 (1999).ADSCrossRefGoogle Scholar
  3. 3.
    A. G. Reiss et al., Astrophys. J. 116, 1009 (1998).Google Scholar
  4. 4.
    D. N. Spergel et al., Astrophys. J. Suppl. 170, 377 (2007).ADSCrossRefGoogle Scholar
  5. 5.
    R. Caldwell and M. Kamionkowski, Ann. Rev. Nucl. Part. S. 59, 397 (2009).ADSCrossRefGoogle Scholar
  6. 6.
    T. Padmanabhan, Phys. Rep. 380, 235 (2003).ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    E. Tortora and M. Demianski, Astron. Astroph. 431, 27 (2005).ADSCrossRefGoogle Scholar
  8. 8.
    V. F. Cardone et al., Astron. Astroph. 429, 49 (2005).ADSCrossRefGoogle Scholar
  9. 9.
    P. J. E. Peebles and B. Ratra, Astrophys. J. Lett. 325, 17 (1988).ADSCrossRefGoogle Scholar
  10. 10.
    B. Ratra and P. J. E. Peebles, Phys. Rev. D 37, 3406 (1988).ADSCrossRefGoogle Scholar
  11. 11.
    V. Sahni and A. A. Starobinsky, Int. J. Mod. Phys. D 9, 373 (2000).ADSGoogle Scholar
  12. 12.
    Y.-Z. Ma, Nucl. Phys. B 804, 262 (2008).ADSCrossRefGoogle Scholar
  13. 13.
    J. A. S. Lima et al., MNRAS 312, 747 (2000).ADSCrossRefGoogle Scholar
  14. 14.
    J. A. S. Lima and J. S. Alcaniz, Astronomy and Astrophysics 348, 1 (1999).ADSGoogle Scholar
  15. 15.
    H. Weyl, Mathem. Z. 2, 384 (1918).CrossRefGoogle Scholar
  16. 16.
    G. Lyra, Mathem. Z. 54, 52 (1951).CrossRefGoogle Scholar
  17. 17.
    D. K. Sen, Z. für Physik A: Hadrons and Nuclei 149, 311 (1957).CrossRefGoogle Scholar
  18. 18.
    D. K. Sen and K. A. Dunn, J. Math. Phys. 12, 578 (1971).ADSCrossRefGoogle Scholar
  19. 19.
    W. D. Halford, Austr. J. Phys. 23, 863 (1970).ADSCrossRefGoogle Scholar
  20. 20.
    W. D. Halford, J. Math. Phys. 13, 1699 (1972).ADSCrossRefGoogle Scholar
  21. 21.
    M. S. Berman and F. Gomide, Gen. Rel. Grav. 20, 191 (1988).ADSCrossRefGoogle Scholar
  22. 22.
    K. S. Bhamra, Austr. J. Phys. 27, 541 (1974).ADSCrossRefGoogle Scholar
  23. 23.
    H. Soleng, Gen. Rel. Grav. 19, 1213 (1987).ADSCrossRefGoogle Scholar
  24. 24.
    F. Rahaman, Astroph. Space Sci. 281, 595 (2002).ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    C. P. Singh, Astroph. Space Sci. 275, 377 (2001).ADSCrossRefGoogle Scholar
  26. 26.
    N. I. Singh, S. R. Devi, S. S. Singh, and A. S. Devi, Astroph. Space Sci. 321, 233 (2009).ADSCrossRefGoogle Scholar
  27. 27.
    O. Akarsu, S. Kumar, R. Myrzakulov, M. Sami, and L. Xu, JCAP 01, 022 (2014).ADSCrossRefGoogle Scholar
  28. 28.
    P. De Bernardis et al., Nature 404, 955 (2000).ADSCrossRefGoogle Scholar
  29. 29.
    R. Stompor et al., Astroph. J. 561, 7 (2001).ADSCrossRefGoogle Scholar
  30. 30.
    T. Koivisto and D. F. Mota, Astroph. J. 679, 1 (2008).ADSCrossRefGoogle Scholar
  31. 31.
    B. Saha, Chin. J. Phys. 43, 1035 (2005).Google Scholar
  32. 32.
    O. Akarsu and C. B. Kilinic, Gen. Rel. Grav. 42, 763 (2010).ADSCrossRefGoogle Scholar
  33. 33.
    M. Sharif and M. Zubair, Int. J. Mod. Phys. D 19, 1957 (2010).ADSCrossRefGoogle Scholar
  34. 34.
    T. Singh and R. Chaubey, Astroph. Space Sci. 321, 5 (2009).ADSCrossRefGoogle Scholar
  35. 35.
    S. Surendra Singh, Y. Bembem Devi, and M. Saratchandra Singh, Can. J. Phys. 95, 748 (2017).ADSCrossRefGoogle Scholar
  36. 36.
    S. Kumar and C. P. Singh, Astroph. Space Sci. 312, 57 (2007).ADSCrossRefGoogle Scholar
  37. 37.
    C. P. Singh et al.: Astrophys. Space Sci. 315, 181 (2008).ADSCrossRefGoogle Scholar
  38. 38.
    J. P. Singh and P. S. Baghel, Int. J. Theor. Phys. 48, 449 (2009).CrossRefGoogle Scholar
  39. 39.
    M. Visser, Class. Quantum Grav. 21, 2603 (2004).ADSCrossRefGoogle Scholar
  40. 40.
    V. Sahni, T. D. Saini, A. A. Starobinsky, and U. Alam, JETP Lett. 77, 201 (2003).ADSCrossRefGoogle Scholar
  41. 41.
    N. Ahmad and A. Pradhan, Int. J. Theor. Phys. 53, 289 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Department of MathematicsNIT ManipurImphalIndia

Personalised recommendations