Advertisement

Gravitation and Cosmology

, Volume 25, Issue 1, pp 1–17 | Cite as

Nonperturbative Quantization à La Heisenberg: Modified Gravities, Wheeler-DeWitt Equations, and Monopoles in QCD

  • V. DzhunushalievEmail author
  • V. FolomeevEmail author
  • H. QuevedoEmail author
Article
  • 9 Downloads

Abstract

For field theories in which no small parameter is available, we use Heisenberg’s quantization procedure to propose a definition of nonperturbative quantum states in terms of the complete set of Green functions. We present the corresponding quantization schemes in the case of Einstein gravity and gauge theories. To illustrate the procedure of quantization, we show that: (1) modified theories of gravity appear as an effective approximation of nonperturbative quantum gravity; (2) the Wheeler-DeWitt equations appear as a sort of approximation of the quantization procedure á la Heisenberg, and (3) it is possible to carry out explicit nonperturbative calculations in quantum chromodynamics, and we obtain the energy spectrum of a quantum monopole and some thermodynamic quantities for a gas of noninteracting quantum monopoles.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Strocchi, An Introduction to Nonperturbative Foundations of Quantum Field Theory (Oxford University Press, UK, 2013)CrossRefzbMATHGoogle Scholar
  2. 2.
    I. Feranchuk, A. Ivanov, V. Le, and A. Ulyanenkov, Nonperturbative Description of Quantum Systems (Springer, Heidelberg, 2015).zbMATHGoogle Scholar
  3. 3.
    G. V. Dunne and M. Ünsal, “New nonperturbative methods of quantum field theory: From large-N orbifold equivalence to bions and resurgence,” Ann. Rev. Nucl. Part. Sci. 66, 245 (2016).ADSCrossRefGoogle Scholar
  4. 4.
    W. Heisenberg, Introduction to the Unified Field Theory of Elementary Particles (Max-Planck-Institut für Physik und Astrophysik, Interscience Publisher, London, 1966)zbMATHGoogle Scholar
  5. 5.
    Y. Nambu, Phys. Rev. D 10, 4262 (1974).ADSCrossRefGoogle Scholar
  6. 6.
    G.’t Hooft, in: High Energy Physics, Ed. A. Zichichi (Editrice Compositori, Bologna, 1975).Google Scholar
  7. 7.
    S. Mandelstam, Phys. Rep. 23, 245 (1976).ADSCrossRefGoogle Scholar
  8. 8.
    G. Ripka, Lect. Notes Phys. 639, 1 (2004); hepph/0310102.CrossRefGoogle Scholar
  9. 9.
    Y. M. Shnir, MagneticMonopoles (Springer, Berlin-Heidelberg-NY, 2005).Google Scholar
  10. 10.
    A. Di Giacomo, B. Lucini, L. Montesi, and G. Paffuti, Phys. Rev. D 61, 034503 (2000); hep-lat/9906024.ADSCrossRefGoogle Scholar
  11. 11.
    A. Di Giacomo, B. Lucini, L. Montesi, and G. Paffuti, Phys. Rev. D 61, 034504 (2000); hep-lat/9906025.ADSCrossRefGoogle Scholar
  12. 12.
    M. N. Chernodub, F. V. Gubarev, M. I. Polikarpov, and A. I. Veselov, Prog. Theor. Phys. Suppl. 131, 309 (1998); hep-lat/9802036.ADSCrossRefGoogle Scholar
  13. 13.
    M. N. Chernodub and M. I. Polikarpov, In Cambridge 1997, Confinement, Duality, and Nonperturbative Aspects of QCD p. 387-414; hep-th/9710205.Google Scholar
  14. 14.
    A. M. Polyakov, Nucl. Phys. B 120, 429 (1977).ADSCrossRefGoogle Scholar
  15. 15.
    F. Nesti, “Three-dimensional large N monopole gas,” hep-th/9610127.Google Scholar
  16. 16.
    B. V. Martemyanov and S. V. Molodtsov, JETP Lett. 65, 142 (1997) [Pisma Zh. Eksp. Teor. Fiz. 65, 133 (1997)].ADSCrossRefGoogle Scholar
  17. 17.
    N. O. Agasian and K. Zarembo, Phys. Rev. D 57, 2475 (1998); hep-th/9708030.ADSCrossRefGoogle Scholar
  18. 18.
    M. N. Chernodub, Phys. Lett. B 515, 400 (2001); hep-th/0011124.ADSCrossRefGoogle Scholar
  19. 19.
    M. N. Chernodub, K. Ishiguro, and T. Suzuki, Prog. Theor. Phys. 112, 1033 (2004); hep-lat/0407040.ADSCrossRefGoogle Scholar
  20. 20.
    S. R. Das and G. Murthy, Phys. Rev. Lett. 104, 181601 (2010); arXiv: 0909. 3064.ADSCrossRefGoogle Scholar
  21. 21.
    A. C. Davis, A. Hart, T. W. B. Kibble and A. Rajantie, Phys. Rev. D 65, 125008 (2002); hep-lat/0110154.ADSCrossRefGoogle Scholar
  22. 22.
    V. Dzhunushaliev, “Quantum monopole via Heisenberg quantization,” arXiv: 1711. 01737.Google Scholar
  23. 23.
    V. Dzhunushaliev, EPJWeb Conf. 138, 02003 (2017); arXiv: 1608. 05662.CrossRefGoogle Scholar
  24. 24.
    V. Dzhunushaliev, V. Folomeev, B. Kleihaus, and J. Kunz, Eur. Phys. J. C 75, 157 (2015); arXiv: 1501. 00886.ADSCrossRefGoogle Scholar
  25. 25.
    V. Dzhunushaliev, V. Folomeev, B. Kleihaus, and J. Kunz, Eur. Phys. J. C 74, 2743 (2014); arXiv: 1312. 0225.ADSCrossRefGoogle Scholar
  26. 26.
    V. Dzhunushaliev and H. Quevedo, Grav. Cosmol. 23, 280 (2017); arXiv: 1603. 00951.ADSCrossRefGoogle Scholar
  27. 27.
    V. Dzhunushaliev, Int. J. Mod. Phys. D 21, 1250042 (2012); arXiv:1201. 1069.ADSCrossRefGoogle Scholar
  28. 28.
    S. Carlip, “Quantum gravity: A progress report,” Rep. Prog. Phys. 64, 885 (2001).ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Department of Theoretical and Nuclear PhysicsAl-Farabi Kazakh National UniversityAlmatyKazakhstan
  2. 2.Institute of Experimental and Theoretical PhysicsAl-Farabi Kazakh National UniversityAlmatyKazakhstan
  3. 3.Institute of Physicotechnical Problems and Material Science of the NAS of the Kyrgyz RepublicBishkekKyrgyzstan
  4. 4.Institute of Systems ScienceDurban University of TechnologyDurbanSouth Africa
  5. 5.Instituto de Ciencias NuclearesUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
  6. 6.Dipartimento di Fisica and ICRAUniversità di Roma “La Sapienza”RomaItaly

Personalised recommendations