Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Almost-BPS solutions in multi-center Taub-NUT

Abstract

Microstates of multiple collinear black holes embedded in a non-collinear two-center Taub- NUT space-time are sought in 4 dimensions. A set of coupled partial differential equations are obtained and solved for almost-BPSstates, where some supersymmetry is preserved in the context of N = 2supergravity in 4 dimensions. The regularity of solutions is carefully considered, and we ensure that no CTC (closed time-like curves) are present. The larger framework is that of 11-dimensional N = 2 supergravity, and the current theory is obtained by compactifying it down to 4 dimensions. This work is a generalization (to three non-collinear centers) of a previous paper by Bena et al.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    I. Bena and N. Warner, Adv. Theor. Math. Phys. 9, 667 (2005); hep-th/0408106.

  2. 2.

    J. B. Gutowski and H. S. Reall, JHEP 0404, 048 (2004); hep-th/0401129.

  3. 3.

    J. P. Gauntlett, J. B. Gutowski, C.M. Hull, S. Parkis, and H. S. Reall, Class. Quantum Grav. 20, 4587 (2003); hep-th/0209114.

  4. 4.

    G. Giusti and S. D. Mathur, Nucl. Phys. B 729, 203 (2005); hep-th/0409067.

  5. 5.

    I. Bena and N. P. Warner, Phys. Rev. D 74, 066001 (2006); hep-th/0505166.

  6. 6.

    P. Berglund, E. G. Gimon, and T. S. Levi, JHEP 007 (2006); hep-th/0505167.

  7. 7.

    S. Giusto, S. D. Mathur, and A. Saxena, Nucl. Phys. B 701, 357 (2004); hep-th/0405017.

  8. 8.

    I. Bena, N. Bobev, and N.P. Warner, JHEP0708, 004 (2007); arXiv: 0705.3641.

  9. 9.

    G.W. Gibbons and S.W. Hawking, Phys. Lett. B 78, 430 (1978).

  10. 10.

    G.W. Gibbons and J. P. Ruback, Comm. Math. Phys. 115, 267 (1988).

  11. 11.

    I. Bena, P. Kraus, and N. P. Warner, Phys. Rev. D72, 084019 (2005).

  12. 12.

    J. P. Gauntlett and J. B. Gutowski, Phys. Rev. D 71, 045002 (2005); hep-th/0408122.

  13. 13.

    H. Elvang, R. Emparan, D. Mateos, and H. S. Reall, Phys. Rev. D 71, 024033 (2005); hep-th/0408120.

  14. 14.

    H. Elvang, R. Emparan, D. Mateos, and H. S. Reall, Phys. Rev. Lett. 93, 211302 (2004); hep-th/0407065.

  15. 15.

    I. Bena and N. P. Warner, Lect. Notes Phys. 755 (2008); hep-th/0701216.

  16. 16.

    I. Bena, S. Giusto, C. Ruef, and N. P. Warner, JHEP 0911, 032 (2009); arXiv: 0908.2121.

  17. 17.

    A. Ceresole and G. Dall-Agata, JHEP 0703, 110 (2007); hep-th/0702088.

  18. 18.

    I. Bena, G. Dall-Agata, S. Giusto, C. Ruef, and N. P. Warner, JHEP 0906, 015 (2009); arXiv:0902.4526.

  19. 19.

    G. Bossard, JHEP 120, 113 (2012); arXiv:1203.0530.

  20. 20.

    G. Bossard and C. Ruef, Gen. Rel. Grav. 44, 21 (2012); arXiv:1106.5806.

  21. 21.

    A. Strominger and C. Vafa, Phys. Lett. B 379, 99 (1996); hep-th/9601029.

  22. 22.

    G. T. Horowitz and J. Polchinski, Phys. Rev. D 55, 6189 (1997); hep-th/9612146.

  23. 23.

    S. D. Mathur, Fortsch. Phys. 53, 793 (2005); hepth/0502050.

  24. 24.

    D. Mateos and P. K. Townsend, Phys. Rev. Lett. 87, 011602 (2001); hep-th/0103030.

  25. 25.

    R. Emparan, D. Mateos, and P. K. Townsend, JHEP 0107, 011 (2001); hep-th/0106012.

  26. 26.

    I. Bena, N. Bobev, C. Ruef, and N. P. Warner, JHEP 0907, 106 (2009); arXiv:0812.2942.

  27. 27.

    T. K. Finch, JHEP 0903, 145 (2009); hepth/0612085.

  28. 28.

    N. P. Warner, Prog. Theor. Phys. Suppl. 177, 228 (2009); arXiv: 0810.2596.

  29. 29.

    I. Bena, N. Bobev, C. Ruef, and N. Warren, Phys.Rev. Lett. 105, 231301 (2010); arXiv: 0804.4487.

  30. 30.

    C. Ruef, Nucl. Phys. Proc. Suppl. 192-193, 174 (2009); arXiv: 0901.3227.

  31. 31.

    K. Goldstein and S. Katmadas, JHEP 05, 08 (2009); arXiv: 0812.4183.

Download references

Author information

Correspondence to C. Rugina.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rugina, C., Ludu, A. Almost-BPS solutions in multi-center Taub-NUT. Gravit. Cosmol. 23, 320–328 (2017). https://doi.org/10.1134/S0202289317040181

Download citation