Gravitation and Cosmology

, Volume 22, Issue 4, pp 339–344 | Cite as

A search for observational manifestations of de Sitter relativity

Article

Abstract

De Sitter-invariant special relativity is a natural extension of Einstein’s special relativity. Within this framework, extension of special relativity to de Sitter space-time introduces a new length scale R, serving as an origin of the geometrical cosmological constant Λ = 3/R2. De Sitter relativity predicts a departure from the Lorentz invariance due to space-time curvature, related to the geometrical cosmological constant. In this paper, the impact of de Sitter special relativity effects on threshold particle processes and equivalence principle violation is considered. The main conclusion is that the constraints coming from cosmological fine structure constant variations render this effects nowadays undetectable. A brief outlook is given thereafter.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Hinshaw et al., Astrophys. J. Suppl. 208, 19 (2013).ADSCrossRefGoogle Scholar
  2. 2.
    K. Bamba, S. Capozziello, S. Nojiri, and S. Odintsov, Astrophys. Space Sci. 342, 155 (2012).ADSCrossRefGoogle Scholar
  3. 3.
    M. Li, X.-D. Li, S. Wang, and Y. Wang, Frontiers of Physics 8, 828 (2013).ADSCrossRefGoogle Scholar
  4. 4.
    R. Aldrovandi, J. P. Beltran Almeida, and J. G. Pereira, Class. Quant. Grav. 24, 1385 (2007).ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    G. Amelino-Camelia, Phys. Lett. B 510, 255 (2001).ADSCrossRefGoogle Scholar
  6. 6.
    F. Mansouri, Phys. Lett. B 538, 239 (2002).ADSCrossRefGoogle Scholar
  7. 7.
    L. Sun, M. Yan, Y. Deng, W. Huang, and S. Hu, Mod. Phys. Lett. A 28, 1350114 (2013).ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    M. Yan, N. Xiao, W. Huang, and S. Li, Commun. Theor. Phys. 48, 27 (2007).ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    M. Yan, N. Xiao, W. Huang, and S. Hu, Mod. Phys. Lett. A 27, 1250076 (2012).ADSCrossRefGoogle Scholar
  10. 10.
    M. Yan, S. Hu, W. Huang, and N. Xiao, Mod. Phys. Lett. A 27, 1250041 (2012).ADSCrossRefGoogle Scholar
  11. 11.
    T. Adam et al., JHEP 01, 153 (2013).ADSCrossRefGoogle Scholar
  12. 12.
    M. Li, D. Liu, J.Meng, T.Wang, and L. Zhou, “Replaying neutrino bremsstrahlung with general dispersion relations,” arXiv: 1111.3294.Google Scholar
  13. 13.
    S. Hu, W. Huang, S. Li, and M. Yan, “Remark on “Pair Creation Constrains Superluminal Neutrino Propagation,” arXiv: 1203.6026.Google Scholar
  14. 14.
    M. L. Yan, Chinese Physics C 35, 228 (2011).ADSCrossRefGoogle Scholar
  15. 15.
    M. T. Murphy, J. K. Webb, V. V. Flambaum, C. W. Churchill, and J. X. Prochaska, Mon. Not. Roy. Astron. Soc. 327, 1223 (2001).ADSCrossRefGoogle Scholar
  16. 16.
    J. K. Webb, J. A. King, M. T. Murphy, V. V. Flambaum, R. F. Carswell, and M. B. Bainbridge, Phys. Rev. Lett. 107, 191101 (2011).ADSCrossRefGoogle Scholar
  17. 17.
    R. M. et al. Godun, Phys. Rev. Lett. 113, 210801 (2014).ADSCrossRefGoogle Scholar
  18. 18.
    R. Srianand, H. Chand, P. Petitjean, and B. Aracil. Phys. Rev. Lett. 92, 121302 (2004).ADSCrossRefGoogle Scholar
  19. 19.
    S. S. Feng and M. L. Yan, Int. J. Theor. Phys. 55(2), 1049 (2016).MathSciNetCrossRefGoogle Scholar
  20. 20.
    M. S. Safronova et al., Highly Charged Ions for Atomic Clocks, Quantum Information, and Search for α variation, Phys. Rev. Lett. 113(3), 030801 (2014).ADSCrossRefGoogle Scholar
  21. 21.
    G. Amelino-Camelia, Int. J. Mod. Phys. D 11, 35 (2002).ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    G. T. Zatsepin and V. A. Kuz’min, JETP Lett. 4, 78 (1966).ADSGoogle Scholar
  23. 23.
    K. Greisen, Phys. Rev. Lett. 16, 748 (1966).ADSCrossRefGoogle Scholar
  24. 24.
    R. U. Abbasi et al., Phys. Rev. Lett. 100, 101101 (2008).ADSCrossRefGoogle Scholar
  25. 25.
    J. Abraham et al. Phys. Rev. Lett. 101, 061101 (2008).ADSCrossRefGoogle Scholar
  26. 26.
    M. Takeda et al, Phys. Rev. Lett. 81, 1163 (1998).ADSCrossRefGoogle Scholar
  27. 27.
    A. V. Olinto, Phys. Rept. 333, 329 (2000).ADSCrossRefGoogle Scholar
  28. 28.
    G. Amelino-Camelia and T. Piran, Phys. Rev. 64, 036005 (2001).ADSGoogle Scholar
  29. 29.
    D. Mattingly, Living Reviews in Relativity 8, 5 (2005).ADSCrossRefGoogle Scholar
  30. 30.
    L. Shao, Phys. Rev. D 93 (8), 084023 (2016).ADSCrossRefGoogle Scholar
  31. 31.
    X. J. Bi, P. F. Yin, Z. H. Yu, and Q. Yuan, Phys. Rev. Lett. 107, 241802 (2011).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Department of Theoretical Physics, Physics Department, Institute for Natural SciencesUral Federal UniversityEkaterinburgRussia

Personalised recommendations