Gravitation and Cosmology

, Volume 22, Issue 2, pp 107–115 | Cite as

Particle creation in the early Universe: Achievements and problems

  • A. A. GribEmail author
  • Yu. V. Pavlov


Results on particle creation from vacuum by the gravitational field of the expanding Friedmann Universe are presented. Finite results for the density of particles and the energy density for created particles are given for different exact solutions and different expansion modes of the Universe. The results are obtained for both conformal and nonconformal particles. The hypothesis on the origin of visible matter from the decay of created from vacuum superheavy particles identified with dark matter is discussed.


Dark Matter Early Universe Particle Creation Minimal Coupling Visible Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Grib and S. G. Mamayev, “On field theory in Friedmann space,” Sov. J. Nucl. Phys. (USA) 10, 722–725 (1970)].MathSciNetGoogle Scholar
  2. 2.
    A. A. Grib, S. G. Mamayev, and V. M. Mostepanenko, Quantum Effects in Intensive External Fields (Atomizdat, Moscow, 1980) [in Russian].Google Scholar
  3. 3.
    Ya. B. Zel’dovich and A. A. Starobinskii, “Particle production and vacuum polarization in an anisotropic gravitational field,” Sov. Phys. JETP 34, 1159–1166 (1972).ADSGoogle Scholar
  4. 4.
    Selected Works of Ya. B. Zeldovich, Vol. II: Particlies, Nuclei, and the Universe (Nauka, Moscow, 1985; Princeton Univ., Princeton, 1993).Google Scholar
  5. 5.
    K. P. Stanyukovich and V. N. Melnikov, Hydrodynamics, Fields and Constants in the Theory of Gravitation (Energoatomizdat, Moscow, 1983) [in Russian].Google Scholar
  6. 6.
    S. G. Mamayev, V. M. Mostepanenko, and A. A. Starobinskii, “Particle creation from the vacuum near a homogeneous isotropic singularity,” Sov. Phys. JETP 43, 823–830 (1976).ADSGoogle Scholar
  7. 7.
    V. N. Lukash and A. A. Starobinskii, “The isotropization of the cosmological expansion owing to particle production,” Sov. Phys. JETP 39 742–747 (1974).ADSGoogle Scholar
  8. 8.
    Ya. B. Zel’dovich and I. D. Novikov, The Structure and Evolution of the Universe (Nauka, Moscow, 1975; University of Chicago Press, Chicago, 1983).Google Scholar
  9. 9.
    S. Weinberg, The First Three Minutes. A Modern View of the Origin of the Universe (Basic Books, New York, 1977).Google Scholar
  10. 10.
    A. A. Grib, S. G. Mamayev, and V. M. Mostepanenko, Vacuum Quantum Effects in Strong Fields (Friedmann Lab. Publ., St. Petersburg, 1994).Google Scholar
  11. 11.
    A. A. Grib and V. Yu. Dorofeev, “Creation of particles and entropy in the early Friedmann Universe,” Int. J. Mod. Phys. D 3, 731–738 (1994).ADSCrossRefGoogle Scholar
  12. 12.
    N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge, 1982).CrossRefzbMATHGoogle Scholar
  13. 13.
    Yu. V. Pavlov, “Nonconformal scalar field in a homogeneous isotropic space and the Hamiltonian diagonalization method,” Theor. Math. Phys. 126, 92–100 (2001).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    R. M. Wald, Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics (University of Chicago Press, Chicago, 1994).zbMATHGoogle Scholar
  15. 15.
    A. D. Linde, Particle Physics and Inflationary Cosmology (Harwood Academic, New York, 1990).CrossRefGoogle Scholar
  16. 16.
    Yu. V. Pavlov, “Renormalization and dimensional regularization for a scalar field with Gauss-Bonnettype coupling to curvature,” Theor. Math. Phys. 140, 1095–1108 (2004).CrossRefzbMATHGoogle Scholar
  17. 17.
    Yu. V. Pavlov, “Exact solutions and particle creation for nonconformal scalar fields in homogeneous isotropic cosmological models,” Theor. Math. Phys. 174, 438–445 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    L. P. Grishchuk and V. M. Yudin, “Conformal coupling of gravitational wave field to curvature,” J. Math. Phys. 21, 1168–1175 (1980).ADSCrossRefGoogle Scholar
  19. 19.
    Yu. V. Pavlov, “Creation of the nonconformal scalar particles in nonstationary metric,” Int. J. Mod. Phys. A 17, 1041–1044 (2002).ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    T. Imamura, “Quantized meson field in a classical gravitational field,” Phys. Rev. 118, 1430–1434 (1960).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    L. Parker, “Quantized fields and particle creation in expanding Universe. I,” Phys. Rev. 183, 1057–1068 (1969).ADSCrossRefzbMATHGoogle Scholar
  22. 22.
    A. A. Grib and Yu. V. Pavlov, “Is dark matter the relic of the primordialmatter that created the visible matter of the Universe?”, Grav. Cosmol. 14, 1–7 (2008).ADSCrossRefzbMATHGoogle Scholar
  23. 23.
    S. G. Mamayev and N. N. Trunov, “Space-time description of particle creation in gravitational and electromagnetic fields,” Sov. J. Nucl. Phys. 37, 952–957 (1983).Google Scholar
  24. 24.
    Yu. V. Pavlov, “Space-time description of scalar particle creation by a homogeneous isotropic gravitational field,” Grav. Cosmol. 14, 314–320 (2008).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Yu. V. Pavlov, “On particles creation and renormalization in a cosmological model with a Big Rip,” Grav. Cosmol. 15, 341–344 (2009).ADSCrossRefzbMATHGoogle Scholar
  26. 26.
    A. A. Grib and Yu. V. Pavlov, “Superheavy particles in Friedmann cosmology and the dark matter problem,” Int. J. Mod. Phys. D 11, 433–436 (2002).ADSCrossRefzbMATHGoogle Scholar
  27. 27.
    A. A. Grib and Yu. V. Pavlov, “Cold dark matter and primordial superheavy particles,” Int. J. Mod. Phys. A 17, 4435–4439 (2002).ADSCrossRefzbMATHGoogle Scholar
  28. 28.
    A. A. Grib and Yu. V. Pavlov, “Do active galactic nuclei convert dark matter into visible particles?” Mod. Phys. Lett. A 23, 1151–1159 (2008).ADSCrossRefzbMATHGoogle Scholar
  29. 29.
    A. A. Grib and Yu. V. Pavlov, “Active galactic nuclei and transformation of dark matter into visible matter,” Grav. Cosmol. 15, 44–48 (2009).ADSCrossRefzbMATHGoogle Scholar
  30. 30.
    A. A. Grib and V. Yu. Dorofeev, “Spontaneous symmetry breaking for long-wave gravitons in the early Universe,” Grav. Cosmol. 16, 85–91 (2010).ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.A. Friedmann Laboratory for Theoretical PhysicsSt. PetersburgRussia
  2. 2.Theoretical Physics and Astronomy DepartmentThe Herzen UniversitySt. PetersburgRussia
  3. 3.Institute of Problems in Mechanical EngineeringRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations