Advertisement

Gravitation and Cosmology

, Volume 21, Issue 2, pp 143–151 | Cite as

The role of initial conditions in the universe formation

  • S. G. Rubin
Article

Abstract

The dependence of low-energy physics on initial conditions in the framework of multidimensional gravity is discussed. It is shown that the observable symmetries could be a result of specific topologies originating from space-time foam.

Keywords

Black Hole Dark Matter Gauge Symmetry Extra Dimension Compact Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. D. Barrow and F. J. Tipler, The Anthropic Cosmological Principle (Clarendon Press, Oxford, 1986).Google Scholar
  2. 2.
    M. J. Rees, Our Cosmic Habitat (Princeton Univ. Press, Princeton, 2002).Google Scholar
  3. 3.
    N. Bostrom, Anthropic Bias: Observation Selection Effects in Science and Philosophy (Routledge, New York, 2002).Google Scholar
  4. 4.
    M. Tegmark, “Parallel universes”, in: Science and Ultimate Reality: From Quantum to Cosmos (Cambridge University Press, 2003), astroph/0302131.Google Scholar
  5. 5.
    A. Aguirre and M. Tegmark, JCAP 0501: 003 (2005), hep-th/0409072.Google Scholar
  6. 6.
    G. L. Kane, M. J. Perry, and A. N. Zytkow, New Astron. 7, 45 (2002).CrossRefADSGoogle Scholar
  7. 7.
    P. Danies, Mod. Phys. Lett. A 19, 727 (2004).CrossRefADSGoogle Scholar
  8. 8.
    C. J. Hogan, in: Universe or Multiverse?, ed. B. J. Carr (Cambridge University Press, 2005), astroph/0407086.Google Scholar
  9. 9.
    W. R. Stoeger, G. F. R. Ellis, and U. Kirchner, astroph/0407329.Google Scholar
  10. 10.
    A. Aguirre, in: Universe or Multiverse, ed. B. J. Carr (Cambridge University Press, 2005), astroph/0506519.Google Scholar
  11. 11.
    M. Livio and M. J. Rees, Science 309, 1022 (2005).CrossRefADSGoogle Scholar
  12. 12.
    S. Weinstein, Class. Quantum Grav. 23, 4231 (2006), hep-th/0508006.CrossRefADSMATHGoogle Scholar
  13. 13.
    M. Tegmark et al, Phys. Rev. D 73, 023505 (2006).CrossRefADSGoogle Scholar
  14. 14.
    N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Lett. B 429, 263 (1998).CrossRefADSGoogle Scholar
  15. 15.
    K. R. Dienes, E. Dudas, and T. Gherghetta. “Grand unification at intermediate mass scales through extra dimensions”, Nucl. Phys. B 537, 47 (1999).CrossRefADSMATHMathSciNetGoogle Scholar
  16. 16.
    L. Randall and R. Sundrum, “Large mass hierarchy from a small extra dimension”, Phys. Rev. Lett. 83, 3370 (1999).CrossRefADSMATHMathSciNetGoogle Scholar
  17. 17.
    N. Arkani-Hamed et al., “Neutrino masses from large extra dimensions”, Phys. Rev. D 65(2), 024032 (2002).CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    C. Csáki et al., “Fermions on an interval: Quark and lepton masses without a Higgs”, Phys. Rev. D 70(1), 015012 (2004).CrossRefADSGoogle Scholar
  19. 19.
    G. Cacciapaglia et al., “Curing the ills of Higgsless models: The S parameter and unitarity”, Phys. Rev. D 71(3), 035015 (2005).CrossRefADSGoogle Scholar
  20. 20.
    K. A. Bronnikov, R. V. Konoplich, and S. G. Rubin, “The diversity of universes created by pure gravity”, Class. Quantum Grav. 24, 1261 (2007).CrossRefADSMATHMathSciNetGoogle Scholar
  21. 21.
    K. A. Bronnikov and S. G. Rubin, Black Holes, Cosmology and Extra Dimensions (World Scientic, 2012).CrossRefGoogle Scholar
  22. 22.
    A. Vilenkin, Phys. Rev. D 37, 888 (1988).CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    K. A. Bronnikov and S. G. Rubin, “Self-stabilization of extra dimensions”. Phys. Rev. D 73(12), 124019 (2006).CrossRefADSGoogle Scholar
  24. 24.
    C. Castro, A. Granik, and M. S. El Naschie, hepth/0004152.Google Scholar
  25. 25.
    U. Bleyer, M. Mohazzab, and M. Rainer, grqc/9508035.Google Scholar
  26. 26.
    G. Panico, E. Pontón, J. Santiago, and M. Serone, “Dark matter and electroweak symmetry breaking in models with warped extra dimensions”, Phys. Rev. D 77(11), 115012 (2008).CrossRefADSGoogle Scholar
  27. 27.
    B. Greene and J. Levin, “Dark energy and stabilization of extra dimensions”, JHEP 11:96 (2007).Google Scholar
  28. 28.
    A. A. Kirillov, A. A. Korotkevich, and S. G. Rubin, “Emergence of symmetries”, Phys. Lett. B 718, 237 (2012); ArXiv: 1205.1108.CrossRefADSMathSciNetGoogle Scholar
  29. 29.
    Richard B. Abbott, Stephen M. Barr, and Stephen D. Ellis, “Kaluza-Klein cosmologies and inflation,” Phys. Rev. D 30(4), 15 (1998).MathSciNetGoogle Scholar
  30. 30.
    S.M. Carroll et al., hep-th/0110149.Google Scholar
  31. 31.
    S. Nasri, P. J. Silva, G.D. Starkman, and M. Trodden, Phys.Rev. D 66, 045029 (2002); hep-th/0201063.CrossRefADSGoogle Scholar
  32. 32.
    I. Antoniadis, The physics of extra dimensions, Lect. Notes Phys. 720, 293 (2007).ADSGoogle Scholar
  33. 33.
    S. Mukohyama, “Excitation of a Kaluza-Klein mode by parametric resonance”, Phys. Rev. D 57(10), 6191 (1998).CrossRefADSGoogle Scholar
  34. 34.
    K. Bamba, A. N. Makarenko, A. N. Myagky, S. Nojiri, and S. D. Odintsov. “Bounce cosmology from F(R) gravity and F(R) bigravity”. JCAP 1:8 (2014).CrossRefADSMathSciNetGoogle Scholar
  35. 35.
    L. M. Sokołowski, “Metric gravity theories and cosmology: II. Stability of a ground state in f(R) theories”, Class. Quantum Grav. 24, 3713 (2007).CrossRefADSMATHGoogle Scholar
  36. 36.
    S. Nasri, P. J. Silva, G.D. Starkman, and M. Trodden, “Radion stabilization in compact hyperbolic extra dimensions”, Phys. Rev. D 66(4), 045029 (2002).CrossRefADSGoogle Scholar
  37. 37.
    J. M. Overduin and P. S. Wesson, “Kaluza-Klein gravity”, Phys. Rep. 283, 303 (1997).CrossRefADSMathSciNetGoogle Scholar
  38. 38.
    M. Blagojevic, Gravitation and Gauge Symmetries. (Institute of Physics Publishing, Bristol, 2002).CrossRefMATHGoogle Scholar
  39. 39.
    F. Cianfrani and G. Montani, “low-energy sector of eight-dimensional general relativity:. electroweak model and neutrino mass”, Int. J. Mod. Phys. D 17, 785 (2008).CrossRefADSMATHGoogle Scholar
  40. 40.
    S. G. Rubin, “On the origin of gauge symmetries and fundamental constants”, Sov. Phys. JETP 109, 961 (2009).CrossRefADSGoogle Scholar
  41. 41.
    G. D. Starkman, D. Stojkovic, and M. Trodden, “Large extra dimensions and cosmological problems”, Phys. Rev. D 63(10), 103511 (2001).CrossRefADSGoogle Scholar
  42. 42.
    S. M. Carroll et al., “Classical stabilization of homogeneous extra dimensions”, Phys. Rev. D 66(2), 024036 (2002).CrossRefADSMathSciNetGoogle Scholar
  43. 43.
    U. Günther, P. Moniz, and A. Zhuk, “Multidimensional cosmology and asymptotical AdS”, Astrophys. Space Sci. 283, 679 (2003).CrossRefADSGoogle Scholar
  44. 44.
    A. Chopovsky, M. Eingorn, and A. Zhuk, “Kaluza-Klein multidimensional models with Ricci-flat internal spaces: the absence of the KK particles”, Adv. High Energy Phys. 2013, 106135 (2013).CrossRefMathSciNetGoogle Scholar
  45. 45.
    S. Rubin and A. Zinger, “The universe formation by space reduction cascades with random initial parameters”, Gen. Rel. Grav. 44 2283 (2012).CrossRefADSMATHMathSciNetGoogle Scholar
  46. 46.
    P. S. Wesson. “Space-time uncertainty from higherdimensional determinism”, Gen. Rel. Grav. 36 451 (2004).CrossRefADSMATHMathSciNetGoogle Scholar
  47. 47.
    M. E. Kahil and T. Harko, “Is dark matter an extradimensional effect?”, Mod. Phys. Lett. A 24, 667 (2009).CrossRefADSMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.National Research Nuclear University “MEPhI” (Moscow Engineering Physics Institute)MoscowRussia

Personalised recommendations