Gravitation and Cosmology

, Volume 21, Issue 1, pp 13–18 | Cite as

Are black holes totally black?

Article

Abstract

Geodesic completeness needs that near the horizon of a black hole there exist “white hole” geodesics, coming from the region inside the horizon. We give a classification of all such geodesics with energies E/m ≤ 1 for the Schwarzschild and Kerr black holes. Collisions of particles moving along the “white hole” geodesics with those moving along “black hole” geodesics are considered. Formulas for the increase in the energy of collision in the centre of mass frame are obtained, and the possibility of observation of high energy particles arriving from a black hole on the Earth is discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Pergamon Press, Oxford, 1987).Google Scholar
  2. 2.
    S. Chandrasekhar, The Mathematical Theory of Black Holes (Oxford Univ. Press, Oxford, 1983).MATHGoogle Scholar
  3. 3.
    A. A. Grib, Yu. V. Pavlov, and V. D. Vertogradov, Mod. Phys. Lett. A 29, 1450110 (2014).CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    M. Banados, J. Silk, and S. M. West, Phys. Rev. Lett. 103, 111102 (2009).CrossRefADSGoogle Scholar
  5. 5.
    A. A. Grib and Yu. V. Pavlov, JETP Lett. 92, 125 (2010).CrossRefADSGoogle Scholar
  6. 6.
    A. A. Grib and Yu. V. Pavlov, Astropart. Phys. 34, 581 (2011).CrossRefADSGoogle Scholar
  7. 7.
    A. A. Grib and Yu. V. Pavlov, Grav. Cosmol. 17, 42 (2011).CrossRefADSMATHGoogle Scholar
  8. 8.
    A. A. Grib, Yu. V. Pavlov, and O. F. Piattella, Int. J. Mod. Phys. A 26, 3856 (2011).CrossRefADSMATHGoogle Scholar
  9. 9.
    A. A. Grib, Yu. V. Pavlov, and O. F. Piattella, Grav. Cosmol. 18, 70 (2012).CrossRefADSMATHGoogle Scholar
  10. 10.
    A. A. Grib and Yu. V. Pavlov, Theor. Math. Phys. 176, 881 (2013).CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    A. A. Grib and Yu. V. Pavlov, EPL 101, 20004 (2013).CrossRefADSGoogle Scholar
  12. 12.
    A. A. Grib and Yu. V. Pavlov, Int. J. Mod. Phys. D 20, 675 (2011).CrossRefADSMATHMathSciNetGoogle Scholar
  13. 13.
    R. P. Kerr, Phys. Rev. Lett. 11, 237 (1963).CrossRefADSMATHMathSciNetGoogle Scholar
  14. 14.
    R. H. Boyern and R. W. Lindquist, J. Math. Phys. 8, 265 (1967).CrossRefADSGoogle Scholar
  15. 15.
    V. P. Frolov and I. D. Novikov, Black Hole Physics: Basic Concepts and New Developments (Kluwer Acad. Publ., Dordrecht, 1998).CrossRefMATHGoogle Scholar
  16. 16.
    J. M. Bardeen, W. H. Press, and S. A. Teukolsky, Astrophys. J. 178, (1972) 347.CrossRefADSGoogle Scholar
  17. 17.
    T. Harada, and Kimura, Phys. Rev. D 83, 084041 (2011).CrossRefADSGoogle Scholar
  18. 18.
    O. B. Zaslavskii, Phys. Rev. D 84, 024007 (2011).CrossRefADSGoogle Scholar
  19. 19.
    A. A. Grib and Yu. V. Pavlov, Mod. Phys. Lett. A 23, 1151 (2008).CrossRefADSMATHGoogle Scholar
  20. 20.
    J. Gariel, N. O. Santos, and J. Silk, Phys. Rev. D 90, 063505 (2014).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.A. Friedmann Laboratory for Theoretical PhysicsSt. PetersburgRussia
  2. 2.Copernicus Center for Interdisciplinary StudiesKrakówPoland
  3. 3.Theoretical Physics and Astronomy DepartmentThe Herzen UniversitySt. PetersburgRussia
  4. 4.Institute of Problems in Mechanical EngineeringRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations