Gravitation and Cosmology

, Volume 20, Issue 2, pp 80–89 | Cite as

Inhomogeneous universe in f(T) theory

  • Manuel E. Rodrigues
  • M. Hamani Daouda
  • M. J. S. Houndjo
  • Ratbay Myrzakulov
  • Muhammad Sharif
Article

Abstract

We obtain the equations of motions of the f(T) theory considering the Lemaître-Tolman-Bondi’s metric for a set of diagonal and non-diagonal tetrads. In the case of diagonal tetrads, the equations of motion of the f(T) theory impose a constant torsion or the same equations as in general relativity (GR), while in the case of a non-diagonal set, the equations are quite different from that obtained in GR. We show a simple example of a universe dominated by matter for the two cases. The comparison of the masses in the non-diagonal case shows a sort of increase with respect to the diagonal case. We also find two examples for the non-diagonal case. The first one concerns a Schwarzschild-type black hole solution, which presents a temperature higher than that of Schwarzschild, and a black hole in a dust-dominated universe.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Nojiri and S. D. Odintsov, Phys. Rep. 505, 59 (2011); ECONF C 0602061:06, (2006); Int. J. Geom. Meth. Mod. Phys. 4, 115 (2007).ADSCrossRefMathSciNetGoogle Scholar
  2. 2.
    S. Capozziello and V. Faraoni, Beyond Einstein Gravity. A Survey of Gravitational Theories for Cosmology and Astrophysics, Series: Fundamental Theories of Physics, Vol. 170, Springer, New York (2011).MATHGoogle Scholar
  3. 3.
    G. Cognola, E. Elizalde, S. Nojiri, S. D. Odintsov, and S. Zerbini, Phys. Rev. D 73, 084007 (2006).ADSCrossRefGoogle Scholar
  4. 4.
    S. D. Odintsov, T. Harko, F. S. N. Lobo, and S. Nojiri, Phys. Rev. D 84, 024020 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    I. Antoniadis, J. Rizos, and K. Tamvakis, Nucl. Phys. B 415, 497 (1994).ADSCrossRefGoogle Scholar
  6. 6.
    V. C. de Andrade, L. C. T. Guillen, and J. G. Pereira, gr-qc/0011087.Google Scholar
  7. 7.
    M. H. Daouda, M. E. Rodrigues, and M. J. S. Houndjo, Eur. Phys. J. C 72, 1890 (2012), arXiv: 1109.0528.ADSCrossRefGoogle Scholar
  8. 8.
    J. Yang, Y.-L. Li, Y. Zhong, and Y. Li, arXiv: 1202.0129; K. Karami and A. Abdolmaleki, arXiv: 1201.2511; K. Atazadeh and F. Darabi, arXiv: 1112.2824; H. Wei, X.-J. Guo, and L.-F. Wang, Phys. Lett. B 707, 298 (2012); K. Karami and A. Abdolmaleki, arXiv: 1111.7269; P. A. Gonzalez, E. N. Saridakis, and Y. Vasquez, arXiv: 1110.4024; S. Capozziello, V. F. Cardone, H. Farajollahi, and A. Ravanpak, Phys. Rev. D 84, 043527 (2011); R.-X. Miao, M. Li, and Y.-G. Miao, arXiv: 1107.0515; Xin-he Meng and Y.-b. Wang, Eur. Phys. J. C 71, 1755 (2011); H. Wei, X.-P. Ma, and H.-Y. Qi, Phys. Lett. B 703, 74 (2011); M. Li, R.-X. Miao, and Y.-G. Miao, JHEP 1107, 108 (2011); S. Chattopadhyay and U. Debnath, Int. J. Mod. Phys. D 20, 1135 (2011); P. B. Khatua, S. Chakraborty, and U. Debnath, arXiv: 1105.3393; Y.-F. Cai, S.-H. Chen, J. B. Dent, S. Dutta, and E. N. Saridakis, Class. Quantum Grav. 28, 215011 (2011); R.-J. Yang, Europhys. Lett. 93, 60001 (2011); C. G. Boehmer, A. Mussa, and N. Tamanini, Class. Quantum Grav. 28, 245020 (2011); R. Ferraro and F. Fiorini, Phys. Rev. D 75, 084031 (2007); G. Bengochea and R. Ferraro, Phys. Rev. D 79, 124019 (2009); E. V. Linder, Phys. Rev. D 81, 127301 (2010); B. Li, T. P. Sotiriou, and J. D. Barrow, Phys. Rev. D 83, 104017 (2011); S.-H. Chen, J. B. Dent, S. Dutta, and E. N. Saridakis, Phys. Rev. D 83, 023508 (2011); T. Wang, Phys. Rev. D 84, 024042 (2011); L. Iorio and E. N. Saridakis, arXiv: 1203.5781; H. Dong, Y.-b. Wang, and X.-he Meng, arXiv: 1203.5890; M. E. Rodrigues, M. J. S. Houndjo, D. Saez-Gomez, and F. Rahaman, Phys. Rev. D 86, 104059 (2012), arXiv:1209.4859; M. E. Rodrigues, M. J. S. Houndjo, D. Momeni, and R. Myrzakulov, Int. J. Mod. Phys. D 22, 1350043 (2013), arXiv: 1302.4372; M. J. S.Houndjo, D. Momeni, R. Myrzakulov, and M. E. Rodrigues, arXiv: 1304.1147; M. E. Rodrigues, M. J. S. Houndjo, J. Tossa, D. Momeni, and R. Myrzakulov, JCAP 11, 024 (2013), arXiv: 1306.2280; I. G. Salako, M. E. Rodrigues, A. V. Kpadonou, M. J. S. Houndjo, and J. Tossa, JCAP 060, 1475 (2013), arXiv: 1307.0730; M. E. Rodrigues, I. G. Salako, M. J. S. Houndjo, and J. Tossa, Int. J. Mod. Phys. D 23, 1450004 (2014), arXiv: 1308.2962.Google Scholar
  9. 9.
    R. Myrzakulov, Eur. Phys. J. C 71, 1752 (2011); K. K. Yerzhanov, Sh. R. Myrzakul, I. I. Kulnazarov, and R. Myrzakulov, arXiv: 1006.3879; R. Myrzakulov, Gen. Rel. Grav. 44, 3059 (2012); K. Bamba, R. Myrzakulov, S. Nojiri, and S. D. Odintsov, Phys. Rev. D 85, 104036 (2012); M. Jamil, D. Momeni, and R. Myrzakulov, Eur. Phys. J. C 72, 1959 (2012); K. Bamba, M. Jamil, D. Momeni, and R. Myrzakulov, arXiv: 1202.6114; R. Myrzakulov, arXiv: 1205.5266; M. J. S. Houndjo, D. Momeni, and R. Myrzakulov, arXiv: 1206.3938; R. Myrzakulov, Eur. Phys. J. C 72, 2203 (2012); M. Jamil, K. R. Yesmakhanova, D. Momeni, and R. Myrzakulov, Cent. Eur. J. Phys., 10, 1065 (2012); M. Jamil, D. Momeni, and R. Myrzakulov, Eur. Phys. J. C 72, 2075 (2012); 72, 2122 (2012); 72, 2137 (2012); M. Sharif, S. Rani, and R. Myrzakulov, arXiv: 1210.2714; M. Jamil, D. Momeni, R. Myrzakulov, and P. J. Rudra, Phys. Soc. Jpn. 81, 114004 (2012); M. Jamil, D. Momeni, and R. Myrzakulov, arXiv: 1211.3740; M. Jamil, D. Momeni, and R. Myrzakulov, Generalized Teleparallel Gravities. Resolution of Dark Energy and Dark Matter Problems (LAP, Lam[bert Academic Publishing, 2012); R. Myrzakulov, Entropy 14, 1627 (2012).ADSCrossRefGoogle Scholar
  10. 10.
    A. Krasinski, Inhomogeneous Cosmological Models (Cambridge: Cambridge University Press, 1997); K. Bolejko, A. Krasinski, C. Hellaby, and M. N. Celerier, Structures in the Universe by Exact Methods: Formation, Evolution, Interactions (Cambridge: Cambridge University Press, 2009).CrossRefMATHGoogle Scholar
  11. 11.
    G. Lemaître, Ann. Soc. Sci. Bruxelles A 53, 51 (1933) (English translation, with historical comments: Gen. Rel. Grav. 29, 641 (1997)); R. C. Tolman, Proc. Nat. Acad. Sci. USA 20, 169 (1934) (reprinted, with historical comments: Gen. Rel. Grav. 29, 935 (1997)).Google Scholar
  12. 12.
    J. P. Uzan, C. Clarkson and G. F. R. Ellis, Phys. Rev. Lett. 100, 191303 (2008); M. E. Araújo and W. R. Stoeger, Phys. Rev. D 80, 123517 (2009).ADSCrossRefGoogle Scholar
  13. 13.
    S. Alexander, T. Biswas, A. Notari, and D. Vaid, JCAP 09, 025 (2009); C. Clarkson and M. Regis, JCAP 02, 013 (2011); A. Moss, J. P. Zibin, and D. Scott, Phys. Rev. D 83, 103515 (year?); M. Regis and C. Clarkson, arXiv: 1003.1043; W. Valkenburg, JCAP 06, 010 (2009); J. P. Zibin, A. Moss and D. Scott, Phys. Rev. Lett. 101, 251303 (2008).ADSCrossRefGoogle Scholar
  14. 14.
    M. N. Celerier, Astron. Astrophys. 353, 63 (2000); H. Iguchi, T. Nakamura, and K. Nakao, Progr. Theor. Phys. 108, 809 (2002); H. Alnes, M. Amarzguioui and O. Gron, Phys. Rev. D 73, 08351 (2006); D. J. H. Chung and A. E. Romano, Phys. Rev. D 74, 103507 (2006); H. Alnes and M. Amarzguioui, Phys. Rev. D 75, 023506 (2007); T. Biswas, R. Mansouri, and A. Notari, JCAP 12, 017 (2007); N. Brouzakis, N. Tetradis, and E. Tzavara, JCAP 02, 013 (2007), JCAP 04, 008 (2008); K. Bolejko, PMC Phys. A 2, 1 (2008); T. Biswas and A. Notari, JCAP 06, 021 (2008); T. Clifton, P. G. Ferreira, and K. Land, Phys. Rev. Lett. 101, 131302 (2008); K. Enqvist, Gen. Rel. Grav. 40, 451 (2008); K. Enqvist and T. Mattsson, JCAP 02, 019 (2007); V. Marra, E. W. Kolb, and S. Matarrese, Phys. Rev. D 77, 023003 (2008); V. Marra, E. W. Kolb, S. Matarrese, and A. Riotto, Phys. Rev. D 76, 123004 (2007).ADSGoogle Scholar
  15. 15.
    T. Buchert, Class. Quantum Grav. 28, 164007 (2011); S. Rasanen, Class. Quantum Grav. 28, 164008 (2011); D. L. Wiltshire, Class. Quantum Grav. 28, 164006 (2011).ADSCrossRefMathSciNetGoogle Scholar
  16. 16.
    J. T. Firouzjaee and R. Mansouri, Gen. Rel. Grav. 42, 2431 (2010); A. Krasinski and C. Hellaby, Phys. Rev. D 69, 043502 (2004).ADSCrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    A. Krasinski and C. Hellaby, Phys. Rev. D 65, 023501 (2002); Phys. Rev. D 69, 023502 (2004).ADSCrossRefMathSciNetGoogle Scholar
  18. 18.
    K. Bolejko and C. Hellaby, Gen. Rel. Grav. 40, 1771 (2008).ADSCrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    K. Bolejko, A. Krasinski, and C. Hellaby, Mon. Not. R. Astron. Soc. 362, 213 (2005).ADSCrossRefGoogle Scholar
  20. 20.
    M. Bojowald, T. Harada, and R. Tibrewala, Phys. Rev. D 78, 064057 (2008).ADSCrossRefMathSciNetGoogle Scholar
  21. 21.
    B. Li, T. P. Sotiriou, and J. D. Barrow, Phys. Rev. D 83, 064035 (2011), arXiv: 1010.1041; T. P. Sotiriou, B. Li, and J. D. Barrow, Phys. Rev. D 83 104030 (2011), arXiv: 1012.4039.ADSCrossRefGoogle Scholar
  22. 22.
    N. Tamanini and C. G. Boehmer, Phys. Rev. D 86, 044009 (2012); arXiv: 1204.4593.ADSCrossRefGoogle Scholar
  23. 23.
    H. Bondi, Mon. Not. R. Astron. Soc. 107, 410 (1947).ADSMATHMathSciNetGoogle Scholar
  24. 24.
    M. H. Daouda, M. E. Rodrigues, and M. J. S. Houndjo, Eur. Phys. J. C 71, 1817 (2011); arXiv: 1108.2920.ADSCrossRefGoogle Scholar
  25. 25.
    J. Grande and L. Perivolaropoulos, Phys. Rev. D 84, 023514 (2011), arXiv: 1103.4143.ADSCrossRefGoogle Scholar
  26. 26.
    B. Li, T. P. Sotiriou, and J. D. Barrow, Phys. Rev. D 83, 064035 (2011), arXiv: 1010.1041.ADSCrossRefGoogle Scholar
  27. 27.
    C. Gao, X. Chen, Y.-G. Shen, and V. Faraoni, Phys. Rev. D 84, 104047 (2011), arXiv: 1110.6708.ADSCrossRefGoogle Scholar
  28. 28.
    C. Deliduman and B. Yapiskan, arXiv: 1103.2225.Google Scholar
  29. 29.
    R. Ferraro and F. Fiorini, Phys. Rev. D 84, 083518 (2011).ADSCrossRefGoogle Scholar
  30. 30.
    H. Alnes and M. Amarzguioui, Phys. Rev. D 74, 103520 (2006); astro-ph/0607334.ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • Manuel E. Rodrigues
    • 1
    • 2
    • 3
  • M. Hamani Daouda
    • 1
    • 4
  • M. J. S. Houndjo
    • 5
    • 6
    • 7
  • Ratbay Myrzakulov
    • 8
  • Muhammad Sharif
    • 9
  1. 1.Departamento de FírsicaUniversidade Federal do Espírito Santo—Centro de Ciências ExatasVitória ESBrazil
  2. 2.Faculdade de FírsicaUniversidade Federal do ParáBelém, ParáBrazil
  3. 3.Faculdade de Ciências Exatas e TecnologiaUniversidade Federal do Pará, Campus Universitário de AbaetetubaAbaetetuba, ParáBrazil
  4. 4.Department of Physics, Faculty of SciencesAbdou Moumouni University of NiameyNiameNiger
  5. 5.Departamento de Ciêmcias Exatas — CEUNESUniversidade Federal do Espírito SantoSão Mateus/ESBrazil
  6. 6.Institut de Mathematiques et de Sciences Physiques (IMSP)Porto-NovoBénin
  7. 7.Faculté des Sciences et Techniques de NatitingouUniversité de ParakouParakouBénin
  8. 8.Eurasian International Center for Theoretical PhysicsL.N. Gumilyov Eurasian National UniversityAstanaKazakhstan
  9. 9.Department of MathematicsUniversity of the Punjab, Quaid-e-Azam CampusLahorePakistan

Personalised recommendations