Gravitation and Cosmology

, Volume 20, Issue 2, pp 127–131 | Cite as

Note on the properties of exact solutions in Lovelock gravity

Article

Abstract

We study the properties of cosmological solutions for a flat multidimensional anisotropic Universe in Lovelock gravity. Particular attention is paid to some features of the solutions that have no counterparts in analogous solutions of General Relativity (GR). We consider exponential and so-called generalized Milne solutions and discuss the reason for these solutions to exist in Lovelock gravity and do not exist in GR.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Lovelock, J. Math. Phys. 12, 498 (1971).ADSCrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    F. Müller-Hoissen, Phys. Lett. 163B, 106 (1985).ADSCrossRefGoogle Scholar
  3. 3.
    J. Madore, Phys. Lett. 111A, 283 (1985); J. Madore, Class. Quant. Grav. 3, 361 (1986); F. Müller-Hoissen, Class. Quant. Grav. 3, 665 (1986).ADSCrossRefMathSciNetGoogle Scholar
  4. 4.
    N. Deruelle, Nucl. Phys. B327, 253 (1989).ADSCrossRefMathSciNetGoogle Scholar
  5. 5.
    N. Deruelle and L. Fariña-Busto, Phys. Rev. D 41, 3696 (1990).ADSCrossRefMathSciNetGoogle Scholar
  6. 6.
    T. Verwimp, Class. Quant. Grav. 6, 1655 (1989); G. A. Mena Marugán, Phys. Rev. D 42, 2607 (1990); Phys. Rev. D 46, 4340 (1992).ADSCrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    A. V. Toporensky and P. V. Tretyakov, Grav. Cosmol. 13, 207 (2007).ADSMATHMathSciNetGoogle Scholar
  8. 8.
    S.A. Pavluchenko, Phys. Rev. D 80, 107501 (2009).ADSCrossRefMathSciNetGoogle Scholar
  9. 9.
    R. Chingagbam, M. Sami, P. Tretyakov, and A. Toporensky, Phys. Lett. B 661, 162 (2008); S. A. Pavluchenko and A. V. Toporensky, Mod. Phys. Lett. A 24, 513 (2009).ADSCrossRefMathSciNetGoogle Scholar
  10. 10.
    E. Elizalde et al., Phys. Lett. B 644, 1 (2007).ADSCrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    S. A. Pavluchenko and A. V. Toporensky, Mod. Phys. Lett. A 24, 513 (2009).ADSCrossRefGoogle Scholar
  12. 12.
    I. Kirnos, A. Makarenko, S. Pavluchenko, and A. Toporensky, Gen. Rel. Grav. 42, 2633 (2010).ADSCrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    I. Kirnos, S. Pavluchenko, and A. Toporensky, Grav. Cosmol. 16, 274 (2010).ADSCrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    D. Chirkov and A. Toporensky, Grav. Cosmol. 19, 275 (2013).ADSCrossRefMathSciNetGoogle Scholar
  15. 15.
    V. D. Ivashchuk, Grav. Cosmol. 16, 118 (2010).ADSCrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    V. D. Ivashchuk, Int. J. Geom. Meth. Mod. Phys. 7, 797 (2010).CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    A. H. Taub, Ann. Math. 53, 472 (1951).ADSCrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Instituto de Ciencias Físicas y MatemáticasUniversidad Austral de ChileValdiviaChile
  2. 2.Sternberg Astronomical InstituteMoscow State UniversityMoscowRussia

Personalised recommendations