Advertisement

Gravitation and Cosmology

, Volume 20, Issue 2, pp 127–131 | Cite as

Note on the properties of exact solutions in Lovelock gravity

  • Sergey A. Pavluchenko
  • Alexey V. Toporensky
Article

Abstract

We study the properties of cosmological solutions for a flat multidimensional anisotropic Universe in Lovelock gravity. Particular attention is paid to some features of the solutions that have no counterparts in analogous solutions of General Relativity (GR). We consider exponential and so-called generalized Milne solutions and discuss the reason for these solutions to exist in Lovelock gravity and do not exist in GR.

Keywords

Hubble Parameter Lovelock Gravity Exponential Solution Hubble Function Kasner Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Lovelock, J. Math. Phys. 12, 498 (1971).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    F. Müller-Hoissen, Phys. Lett. 163B, 106 (1985).ADSCrossRefGoogle Scholar
  3. 3.
    J. Madore, Phys. Lett. 111A, 283 (1985); J. Madore, Class. Quant. Grav. 3, 361 (1986); F. Müller-Hoissen, Class. Quant. Grav. 3, 665 (1986).ADSCrossRefMathSciNetGoogle Scholar
  4. 4.
    N. Deruelle, Nucl. Phys. B327, 253 (1989).ADSCrossRefMathSciNetGoogle Scholar
  5. 5.
    N. Deruelle and L. Fariña-Busto, Phys. Rev. D 41, 3696 (1990).ADSCrossRefMathSciNetGoogle Scholar
  6. 6.
    T. Verwimp, Class. Quant. Grav. 6, 1655 (1989); G. A. Mena Marugán, Phys. Rev. D 42, 2607 (1990); Phys. Rev. D 46, 4340 (1992).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    A. V. Toporensky and P. V. Tretyakov, Grav. Cosmol. 13, 207 (2007).ADSzbMATHMathSciNetGoogle Scholar
  8. 8.
    S.A. Pavluchenko, Phys. Rev. D 80, 107501 (2009).ADSCrossRefMathSciNetGoogle Scholar
  9. 9.
    R. Chingagbam, M. Sami, P. Tretyakov, and A. Toporensky, Phys. Lett. B 661, 162 (2008); S. A. Pavluchenko and A. V. Toporensky, Mod. Phys. Lett. A 24, 513 (2009).ADSCrossRefMathSciNetGoogle Scholar
  10. 10.
    E. Elizalde et al., Phys. Lett. B 644, 1 (2007).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    S. A. Pavluchenko and A. V. Toporensky, Mod. Phys. Lett. A 24, 513 (2009).ADSCrossRefGoogle Scholar
  12. 12.
    I. Kirnos, A. Makarenko, S. Pavluchenko, and A. Toporensky, Gen. Rel. Grav. 42, 2633 (2010).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    I. Kirnos, S. Pavluchenko, and A. Toporensky, Grav. Cosmol. 16, 274 (2010).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    D. Chirkov and A. Toporensky, Grav. Cosmol. 19, 275 (2013).ADSCrossRefMathSciNetGoogle Scholar
  15. 15.
    V. D. Ivashchuk, Grav. Cosmol. 16, 118 (2010).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    V. D. Ivashchuk, Int. J. Geom. Meth. Mod. Phys. 7, 797 (2010).CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    A. H. Taub, Ann. Math. 53, 472 (1951).ADSCrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Instituto de Ciencias Físicas y MatemáticasUniversidad Austral de ChileValdiviaChile
  2. 2.Sternberg Astronomical InstituteMoscow State UniversityMoscowRussia

Personalised recommendations