Gravitation and Cosmology

, Volume 20, Issue 1, pp 21–25 | Cite as

On creation of scalar particles with Gauss-Bonnet type coupling to curvature in Friedmann cosmological models



Calculations are presented for creation of massive and massless scalar particles coupled to Gauss-Bonnet type curvature in Friedmann cosmologicalmodels. It has been shown that, for fields of mass m, the effect of the coupling parameter ζ with the Gauss-Bonnet invariant is insignificant if ζm2 ≪ 1. In all cases under consideration, the created particle number is compatible by order of magnitude with the number of causally disconnected space-time regions by the Compton time, corresponding to 1/m or √ζ.


  1. 1.
    A. A. Grib, S.G. Mamayev, and V.M. Mostepanenko, Vacuum Quantum Effects in Strong Fields (Energoatomizdat, Moscow, 1988, in Russian; English translation: Friedmann Lab. Publ., St. Petersburg, 1994).Google Scholar
  2. 2.
    N.D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space (Cambridge Univ. Press, Cambridge, 1982).CrossRefMATHGoogle Scholar
  3. 3.
    A. A. Grib and S. G. Mamayev, Yadernaya Fizika 10, 1276 (1969); Sov. J. Nucl. Phys. (USA) 10, 722 (1970).Google Scholar
  4. 4.
    A. A. Grib, Early Expanding Universe and Elementary Particles (Friedmann Lab. Publ., St. Petersburg, 1995).Google Scholar
  5. 5.
    A. A. Grib and V. Yu. Dorofeev, Int. J. Mod. Phys. D 3, 731 (1994).ADSCrossRefGoogle Scholar
  6. 6.
    A. A. Grib and Yu. V. Pavlov, Int. J. Mod. Phys. D 11, 433 (2002).ADSCrossRefGoogle Scholar
  7. 7.
    A. A. Grib and Yu. V. Pavlov, Int. J. Mod. Phys. A 17, 4435 (2002).ADSCrossRefMATHGoogle Scholar
  8. 8.
    A. A. Grib and Yu. V. Pavlov, Mod. Phys. Lett. A 23, 1151 (2008).ADSCrossRefMATHGoogle Scholar
  9. 9.
    V. B. Bezerra, V. M. Mostepanenko, and C. Romero, Mod. Phys. Lett. A 12, 145 (1997).ADSCrossRefGoogle Scholar
  10. 10.
    M. Bordag, J. Lindig, V. M. Mostepanenko, and Yu. V. Pavlov, Int. J. Mod. Phys. D 6, 449 (1997).ADSCrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    S. A. Fulling, Gen. Relat. Grav. 10, 807 (1979).ADSCrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Yu. V. Pavlov, Teor. Mat. Fiz. 126, 115 (2001); Theor. Math. Phys. 126, 92 (2001).CrossRefGoogle Scholar
  13. 13.
    Yu. V. Pavlov, Int. J. Mod. Phys. A 17, 1041 (2002).ADSCrossRefGoogle Scholar
  14. 14.
    A. A. Grib and Yu. V. Pavlov, Grav. Cosmol. 14, 1 (2008).ADSMATHGoogle Scholar
  15. 15.
    Yu. V. Pavlov, Teor. Mat. Fiz. 174, 504 (2013); Theor. Math. Phys. 174, 438 (2013).CrossRefGoogle Scholar
  16. 16.
    Yu. V. Pavlov, Teor. Mat. Fiz. 140, 241 (2004); Theor. Math. Phys. 140, 1095 (2004).CrossRefGoogle Scholar
  17. 17.
    V. Kuzmin and I. Tkachev, Phys. Rev. D 59, 123006 (1999).ADSCrossRefGoogle Scholar
  18. 18.
    S. G. Mamaev, V. M. Mostepanenko, and A. A. Starobinskii, ZhETF 70, 1577 (1976); Sov. Phys.-JETP 43, 823 (1976).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Institute of Problems in Mechanical EngineeringRussian Academy of SciencesSt. PetersburgRussia
  2. 2.A. Friedmann Laboratory for Theoretical PhysicsSt. PetersburgRussia
  3. 3.Copernicus Center for Interdisciplinary StudiesKrakówPoland

Personalised recommendations