Gravitation and Cosmology

, Volume 20, Issue 1, pp 21–25 | Cite as

On creation of scalar particles with Gauss-Bonnet type coupling to curvature in Friedmann cosmological models

  • Yu. V. PavlovEmail author


Calculations are presented for creation of massive and massless scalar particles coupled to Gauss-Bonnet type curvature in Friedmann cosmologicalmodels. It has been shown that, for fields of mass m, the effect of the coupling parameter ζ with the Gauss-Bonnet invariant is insignificant if ζm 2 ≪ 1. In all cases under consideration, the created particle number is compatible by order of magnitude with the number of causally disconnected space-time regions by the Compton time, corresponding to 1/m or √ζ.


Bonnet Scalar Particle Particle Creation Minimal Coupling Friedmann Universe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Grib, S.G. Mamayev, and V.M. Mostepanenko, Vacuum Quantum Effects in Strong Fields (Energoatomizdat, Moscow, 1988, in Russian; English translation: Friedmann Lab. Publ., St. Petersburg, 1994).Google Scholar
  2. 2.
    N.D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space (Cambridge Univ. Press, Cambridge, 1982).CrossRefzbMATHGoogle Scholar
  3. 3.
    A. A. Grib and S. G. Mamayev, Yadernaya Fizika 10, 1276 (1969); Sov. J. Nucl. Phys. (USA) 10, 722 (1970).Google Scholar
  4. 4.
    A. A. Grib, Early Expanding Universe and Elementary Particles (Friedmann Lab. Publ., St. Petersburg, 1995).Google Scholar
  5. 5.
    A. A. Grib and V. Yu. Dorofeev, Int. J. Mod. Phys. D 3, 731 (1994).ADSCrossRefGoogle Scholar
  6. 6.
    A. A. Grib and Yu. V. Pavlov, Int. J. Mod. Phys. D 11, 433 (2002).ADSCrossRefGoogle Scholar
  7. 7.
    A. A. Grib and Yu. V. Pavlov, Int. J. Mod. Phys. A 17, 4435 (2002).ADSCrossRefzbMATHGoogle Scholar
  8. 8.
    A. A. Grib and Yu. V. Pavlov, Mod. Phys. Lett. A 23, 1151 (2008).ADSCrossRefzbMATHGoogle Scholar
  9. 9.
    V. B. Bezerra, V. M. Mostepanenko, and C. Romero, Mod. Phys. Lett. A 12, 145 (1997).ADSCrossRefGoogle Scholar
  10. 10.
    M. Bordag, J. Lindig, V. M. Mostepanenko, and Yu. V. Pavlov, Int. J. Mod. Phys. D 6, 449 (1997).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    S. A. Fulling, Gen. Relat. Grav. 10, 807 (1979).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Yu. V. Pavlov, Teor. Mat. Fiz. 126, 115 (2001); Theor. Math. Phys. 126, 92 (2001).CrossRefGoogle Scholar
  13. 13.
    Yu. V. Pavlov, Int. J. Mod. Phys. A 17, 1041 (2002).ADSCrossRefGoogle Scholar
  14. 14.
    A. A. Grib and Yu. V. Pavlov, Grav. Cosmol. 14, 1 (2008).ADSzbMATHGoogle Scholar
  15. 15.
    Yu. V. Pavlov, Teor. Mat. Fiz. 174, 504 (2013); Theor. Math. Phys. 174, 438 (2013).CrossRefGoogle Scholar
  16. 16.
    Yu. V. Pavlov, Teor. Mat. Fiz. 140, 241 (2004); Theor. Math. Phys. 140, 1095 (2004).CrossRefGoogle Scholar
  17. 17.
    V. Kuzmin and I. Tkachev, Phys. Rev. D 59, 123006 (1999).ADSCrossRefGoogle Scholar
  18. 18.
    S. G. Mamaev, V. M. Mostepanenko, and A. A. Starobinskii, ZhETF 70, 1577 (1976); Sov. Phys.-JETP 43, 823 (1976).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Institute of Problems in Mechanical EngineeringRussian Academy of SciencesSt. PetersburgRussia
  2. 2.A. Friedmann Laboratory for Theoretical PhysicsSt. PetersburgRussia
  3. 3.Copernicus Center for Interdisciplinary StudiesKrakówPoland

Personalised recommendations