Gravitation and Cosmology

, Volume 19, Issue 4, pp 275–283 | Cite as

On the stability of power-law solutions in multidimensional Gauss-Bonnet cosmology

  • D. M. Chirkov
  • A. V. Toporensky


We consider the dynamics of a flat anisotropic multidimensional cosmological model in Gauss-Bonnet gravity in the presence of a homogeneous magnetic field. In particular, we find conditions under which the known power-law vacuum solution can be an attractor in the presence of a nonzero magnetic field. We also describe a particular class of numerical solutions in (5 + 1) dimensions, which does not approach a power-law regime.


Einstein Gravity Initial Singularity Lovelock Gravity Cosmological Singularity Bonnet Gravity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. A. Belinskii, I. M. Khalatnikov, and E. M. Lifshitz, Adv. Phys. 19, 525 (1970).ADSCrossRefGoogle Scholar
  2. 2.
    Victor G. LeBlanc, Class. Quantum Grav. 14, 2281 (1997).MathSciNetADSCrossRefzbMATHGoogle Scholar
  3. 3.
    R. Benini, A. A. Kirillov, and G. Montani, Class. Quantum Grav. 22, 1483 (2005).MathSciNetADSCrossRefzbMATHGoogle Scholar
  4. 4.
    G. Rosen, J. Math. Phys. 3, 313 (1962).ADSCrossRefzbMATHGoogle Scholar
  5. 5.
    N. V. Mitskievich, Rev. Mex. Fis. 49S2, 39 (2003); gr-qc/0202032.MathSciNetGoogle Scholar
  6. 6.
    N. V. Mitskievich, Relativistic Physics in Arbitrary Reference Frames (Nova Science Publishers, 2006); gr-qc/9606051.Google Scholar
  7. 7.
    N. V. Mitskievich, Electromagnetism and perfect fluids interplay in multidimensional spacetimes, in: Proc. MG11 (2006); arXiv: 0707.3190.Google Scholar
  8. 8.
    N. Deruelle, Nucl. Phys. B 327, 253 (1989).MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    N. Deruelle and L. Farina Busto, Phys. Rev. D 41, 3696 (1990).MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    A. Toporensky and P. Tretyakov, Grav. Cosmol. 13, 207 (2007); arXiv: 0705.1346.MathSciNetADSzbMATHGoogle Scholar
  11. 11.
    S. A. Pavluchenko, Phys. Rev. D 80, 107501 (2009); arXiv: 0906.0141.MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    I. Kirnos, A. Makarenko, S. Pavluchenko, and A. Toporensky, Gen. Rel. Grav. 42, 2633 (2010); arXiv: 0906.0140.MathSciNetADSCrossRefzbMATHGoogle Scholar
  13. 13.
    I. Kirnos, S. Pavluchenko, and A. Toporensky, Grav. Cosmol. 16, 274 (2010); arXiv: 1002.4488.MathSciNetADSCrossRefzbMATHGoogle Scholar
  14. 14.
    V. Ivashchuk, Grav. Cosmol. 16, 118 (2010); arXiv: 0910.3426.MathSciNetADSCrossRefzbMATHGoogle Scholar
  15. 15.
    V. Ivashchuk, Int. J. Geom. Meth. Mod. Phys. 7, 797 (2010); arXiv: 0910.3426.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    E. Kasner, American Journal of Math. 43, 217 (1921).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Sternberg Astronomical InstituteMoscow State UniversityMoscowRussia
  2. 2.Faculty of PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations