Gravitation and Cosmology

, Volume 19, Issue 4, pp 275–283 | Cite as

On the stability of power-law solutions in multidimensional Gauss-Bonnet cosmology

Article

Abstract

We consider the dynamics of a flat anisotropic multidimensional cosmological model in Gauss-Bonnet gravity in the presence of a homogeneous magnetic field. In particular, we find conditions under which the known power-law vacuum solution can be an attractor in the presence of a nonzero magnetic field. We also describe a particular class of numerical solutions in (5 + 1) dimensions, which does not approach a power-law regime.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. A. Belinskii, I. M. Khalatnikov, and E. M. Lifshitz, Adv. Phys. 19, 525 (1970).ADSCrossRefGoogle Scholar
  2. 2.
    Victor G. LeBlanc, Class. Quantum Grav. 14, 2281 (1997).MathSciNetADSCrossRefMATHGoogle Scholar
  3. 3.
    R. Benini, A. A. Kirillov, and G. Montani, Class. Quantum Grav. 22, 1483 (2005).MathSciNetADSCrossRefMATHGoogle Scholar
  4. 4.
    G. Rosen, J. Math. Phys. 3, 313 (1962).ADSCrossRefMATHGoogle Scholar
  5. 5.
    N. V. Mitskievich, Rev. Mex. Fis. 49S2, 39 (2003); gr-qc/0202032.MathSciNetGoogle Scholar
  6. 6.
    N. V. Mitskievich, Relativistic Physics in Arbitrary Reference Frames (Nova Science Publishers, 2006); gr-qc/9606051.Google Scholar
  7. 7.
    N. V. Mitskievich, Electromagnetism and perfect fluids interplay in multidimensional spacetimes, in: Proc. MG11 (2006); arXiv: 0707.3190.Google Scholar
  8. 8.
    N. Deruelle, Nucl. Phys. B 327, 253 (1989).MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    N. Deruelle and L. Farina Busto, Phys. Rev. D 41, 3696 (1990).MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    A. Toporensky and P. Tretyakov, Grav. Cosmol. 13, 207 (2007); arXiv: 0705.1346.MathSciNetADSMATHGoogle Scholar
  11. 11.
    S. A. Pavluchenko, Phys. Rev. D 80, 107501 (2009); arXiv: 0906.0141.MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    I. Kirnos, A. Makarenko, S. Pavluchenko, and A. Toporensky, Gen. Rel. Grav. 42, 2633 (2010); arXiv: 0906.0140.MathSciNetADSCrossRefMATHGoogle Scholar
  13. 13.
    I. Kirnos, S. Pavluchenko, and A. Toporensky, Grav. Cosmol. 16, 274 (2010); arXiv: 1002.4488.MathSciNetADSCrossRefMATHGoogle Scholar
  14. 14.
    V. Ivashchuk, Grav. Cosmol. 16, 118 (2010); arXiv: 0910.3426.MathSciNetADSCrossRefMATHGoogle Scholar
  15. 15.
    V. Ivashchuk, Int. J. Geom. Meth. Mod. Phys. 7, 797 (2010); arXiv: 0910.3426.MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    E. Kasner, American Journal of Math. 43, 217 (1921).MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Sternberg Astronomical InstituteMoscow State UniversityMoscowRussia
  2. 2.Faculty of PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations