Gravitation and Cosmology

, Volume 19, Issue 3, pp 156–162 | Cite as

Bouncing solutions in Rastall’s theory with a barotropic fluid

  • G. F. Silva
  • O. F. Piattella
  • J. C. Fabris
  • L. Casarini
  • T. O. Barbosa
Article

Abstract

Rastall’s theory is a modification of Einstein’s theory of gravity where the covariant divergence of the stress-energy tensor is no more vanishing, but is proportional to the gradient of the Ricci scalar. The motivation of this theory is to investigate a possible non-minimal coupling of matter fields to geometry which, being proportional to the curvature scalar, may represent an effective description of quantum gravity effects. Non-conservation of the stress-energy tensor, via Bianchi identities, implies new field equations which have been recently used in a cosmological context, leading to some results of interest. In this paper we adopt Rastall’s theory to reproduce some features of the effective Friedmann equation emerging from loop quantum cosmology. We determine a class of bouncing cosmological solutions and comment about the possibility of employing these models as effective descriptions of a full quantum theory.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time (Cambridge University Press, Cambridge, 1973).MATHCrossRefGoogle Scholar
  2. 2.
    G. L. Klimchitskaya, U. Mohideen, and V. M. Mostepanenko, Rev. Mod. Phys. 81, 1827 (2009).ADSCrossRefGoogle Scholar
  3. 3.
    P. Rastall, Phys. Rev. D 6, 3357 (1972).MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    P. Rastall, Can. J. Phys. 54, 66 (1976).MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    N.D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge, 1982).MATHCrossRefGoogle Scholar
  6. 6.
    J. C. Fabris, T. C. C. Guio, M. Hamani Daouda, and O. F. Piattella, Grav. Cosmol. 17, 259 (2011).ADSMATHCrossRefGoogle Scholar
  7. 7.
    J. C. Fabris, M. H. Daouda, and O. F. Piattella, Phys. Lett. B 711, 232 (2012).ADSCrossRefGoogle Scholar
  8. 8.
    C. E. M. Batista, M. H. Daouda, J. C. Fabris, O. F. Piattella, and D. C. Rodrigues, Phys. Rev. D 85, 084008 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    M. H. Daouda, J. C. Fabris, and O. F. Piattella, AIP Conf. Proc. 1471, 57 (2012).ADSCrossRefGoogle Scholar
  10. 10.
    J. C. Fabris, O. F. Piattella, D. C. Rodrigues, C. E. M. Batista, and M. H. Daouda, Int. J. Mod. Phys. Conf. Ser. 18, 67 (2012).CrossRefGoogle Scholar
  11. 11.
    James E. Lidsey, David Wands, and E. J. Copeland, Phys. Rep. 337, 343 (2000).MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    C. P. Constantinidis, J. C. Fabris, R. G. Furtado, N. Pinto-Neto, and D. Gonzalez, Phys. Rev. D 73, 123513 (2006).ADSCrossRefGoogle Scholar
  13. 13.
    K. A. Bronnikov and J. C. Fabris, JHEP 0209, 062 (2002).MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    N. Pinto-Neto, Quantum cosmology, in: Cosmology and Gravitation II, ed. by Mario Novello (Editions Frontières, Gif-sur-Yvette, 1996).Google Scholar
  15. 15.
    J. C. Fabris, F. T. Falciano, P. Vargas Moniz, J. Marto, and N. Pinto-Neto, Dilaton quantum cosmology with a Schrodinger-like equation, arXiv: 1208.3509 (to appear in Brazil. J. Phys.).Google Scholar
  16. 16.
    C. Rovelli, Quantum Gravity (Cambridge Univeresity Press, Cambridge, 2004).MATHCrossRefGoogle Scholar
  17. 17.
    A. Ashtekar and P. Singh, Class. Quantum Grav. 28, 213001 (2011).MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    K. Banerjee, G. Calcagni, and M. Martin-Benito, SIGMA 8, 016 (2012).MathSciNetGoogle Scholar
  19. 19.
    M. Bojowald, Class. Quantum Grav. 29, 213001 (2012).MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    Gh. Date, Lectures on LQG/LQC, arXiv: 1004.2952.Google Scholar
  21. 21.
    Hua-H. Xiong, T. Qiu, Yi-F. Cai, and X. Zhang, Mod. Phys. Lett. A 24, 1237 (2009).MathSciNetADSMATHCrossRefGoogle Scholar
  22. 22.
    E. Komatsu et al., Astrophys. J. Suppl. 192, 18 (2011).ADSCrossRefGoogle Scholar
  23. 23.
    G. Hinshaw, D. Larson, E. Komatsu, D. N. Spergel, C. L. Bennett, J. Dunkley, M. R. Nolta, M. Halpern, et al., Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological parameter results, arXiv: 1212.5226.Google Scholar
  24. 24.
    Y. Wu, S. Li, J. Lu, and X. Yang, Mod. Phys. Lett. A 22, 783 (2007).ADSCrossRefGoogle Scholar
  25. 25.
    J. He, Y.-B. Wu, and F.-H. Fu, Chin. Phys. Lett. 25, 347 (1978).ADSGoogle Scholar
  26. 26.
    M. L. Bedran, V. Soares, and M. E. Araujo, Phys. Lett. B 659, 462 (2008).ADSCrossRefGoogle Scholar
  27. 27.
    J. C. Fabris, C. Ogouyandjou, J. Tossa, and H. E. S. Velten, Phys. Lett. B 694, 289 (2011).ADSCrossRefGoogle Scholar
  28. 28.
    S. D. P. Vitenti, F. T. Falciano, and N. Pinto-Neto, Quantum cosmological perturbations of generic fluids in quantum universes, arXiv: 1206.4374.Google Scholar
  29. 29.
    M. Novello and S. E. P. Bergliaffa, Phys. Rep. 463, 127 (2008).MathSciNetADSCrossRefGoogle Scholar
  30. 30.
    P. Peter, E. J. C. Pinho, and N. Pinto-Neto, Phys. Rev. D 75, 023516 (2007).ADSCrossRefGoogle Scholar
  31. 31.
    D. J. Mulryne and N. J. Nunes, Phys. Rev. D 74, 083507 (2006).ADSCrossRefGoogle Scholar
  32. 32.
    J. Mielczarek, Phys. Rev. D 79, 123520 (2009).ADSCrossRefGoogle Scholar
  33. 33.
    J. Grain, A. Barrau, T. Cailleteau, and J. Mielczarek, Phys. Rev. D 82, 123520 (2010).ADSCrossRefGoogle Scholar
  34. 34.
    M. Bojowald, G. Calcagni, and Sh. Tsujikawa, Phys. Rev. Lett. 107, 211302 (2011).ADSCrossRefGoogle Scholar
  35. 35.
    M. Bojowald, G. Calcagni and Sh. Tsujikawa, JCAP 11, 046 (2011).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • G. F. Silva
    • 1
  • O. F. Piattella
    • 1
  • J. C. Fabris
    • 1
  • L. Casarini
    • 1
  • T. O. Barbosa
    • 1
  1. 1.Physics DepartmentUniversidade Federal do Espírito SantoVitóriaBrazil

Personalised recommendations