Advertisement

Gravitation and Cosmology

, Volume 19, Issue 1, pp 54–56 | Cite as

“Topological Censorship” is not proven

  • S. V. Krasnikov
Article

Abstract

I show that there is a significant lacuna in the proof of the theorem known as “Topological Censorship” (a theorem forbidding a solution of Einstein’s equations to have some topological features, such as traversable wormholes, without violating the averaged null energy condition). To fill the lacuna one would probably have to revise the class of spacetimes for which the theorem is formulated.

Keywords

Null Geodesic Null Energy Condition Weak Energy Condition Traversable Wormhole Simple Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. L. Friedman, K. Schleich, and D. M. Witt, Phys. Rev. Lett. 71, 1486 (1993); Erratum: Phys. Rev. Lett. 75, 1872 (1995).MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    R. Geroch and G. T. Horowitz. In: S. W. Hawking and W. Israel (eds.), General Relativity, an Einstein Centenary Survey (Cambridge Univ. Press, New York, 1979), p. 212.Google Scholar
  3. 3.
    P. T. Chruściel and R. M. Wald, Class.Quantum Grav. 11, L147 (1994).CrossRefGoogle Scholar
  4. 4.
    G. J. Galloway, Class. Quantum Grav. 12, L99 (1995).MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. 5.
    T. Jacobson and S. Venkataramani, Class. Quantum Grav. 12, 1055 (1995).MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. 6.
    M. S. Morris and K. S. Thorne, Am. J. Phys. 56, 395 (1988).MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Spacetime (Cambridge Univ. Press, Cambridge, 1973).CrossRefGoogle Scholar
  8. 8.
    P. T. Chruściel, G. J. Galloway, and D. Solis, Topological Censorship for Kaluza-Klein Space-Times, Arxiv: 0808.3233.Google Scholar
  9. 9.
    P. T. Chruściel, private communication.Google Scholar
  10. 10.
    A. Borde, Class. Quantum Grav. 4, 343 (1987).MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Central Astronomical Observatory at PulkovoSt. PetersburgRussia

Personalised recommendations