Advertisement

Gravitation and Cosmology

, Volume 18, Issue 3, pp 175–180 | Cite as

Derivation of nonsingular diagonal metrics describing collision of plane gravitational waves with given initial profiles

  • Yu. G. SbytovEmail author
Article
  • 41 Downloads

Abstract

The condition obtained by Yurtsever in the problem of a collision of plane gravitational waves is transformed into a form that allows for deriving new solutions without a curvature singularity in the interaction region. The above condition is augmented with a number of restrictions concerning the class of functions describing the initial waves and their behavior on the fronts and focusing surfaces. Two examples of new solutions derived on the basis of the Chandrasekhar-Xantopoulos solution illustrate the technique proposed in this paper.

Keywords

Function Versus Gravitational Wave Interaction Region Extra Term Weyl Tensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Chandrasekhar and B. C. Xanthopoulos, Proc. Roy. Soc. (London) A 408, 175 (1986).MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. 2.
    V. Ferrari, J. Ibanez, and M. Bruni, Phys. Rev. D 36, 1057 (1987).MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    V. Ferrari and J. Ibanez, Proc. Roy. Soc. (London) A 417, 417 (1988).MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    F. J. Ernst, A. Garcia, and I. Hauser, J. Math. Phys. 28, 2155, 2951 (1987).MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. 5.
    P. Szekeres, J.Math. Phys. 13(3), 286 (1972).MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    U. Yurtsever, Phys. Rev. D 37, 2790 (1988).MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Yu. G. Sbytov, Grav. Cosmol. 15, 362 (2009).MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. 8.
    Yu. G. Sbytov, Izv. Vuzov, Fizika, No. 5, 10 (2011).Google Scholar
  9. 9.
    H. Bateman and A. Erdelyi, Higher Transcendental Functions (McGrow Hill., N.Y., 1953), Vol. 1.Google Scholar
  10. 10.
    J. B. Griffiths, Clas. Quantum Grav. 9, 205 (1992).ADSGoogle Scholar
  11. 11.
    J. Centrella and R. A. Matzner, Phys. Rev. D 25, 930 (1982).ADSCrossRefGoogle Scholar
  12. 12.
    J. Ibanez and E. Verdaguer, Phys. Rev. Lett. 51, 1313 (1983).MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Moscow State Technological University “STANKIN,”MoscowRussia

Personalised recommendations