Advertisement

Gravitation and Cosmology

, Volume 18, Issue 3, pp 204–210 | Cite as

Relativistic modelling of a superdense star containing a charged perfect fluid

  • Neeraj Pant
  • Shahab Faruqi
Article

Abstract

The paper presents a variety of classes of interior solutions of the Einstein-Maxwell field equations for a static, spherically symmetric distribution of a charged fluid of well-behaved nature. They describe perfect fluid balls with positive finite central pressure and density; their ratio is less than one (c = 1), and the causality condition is obeyed at the center. The outmarch of pressure, density, pressuredensity ratio and the adiabatic speed of sound is a monotonic decrease, in a physically appealing manner. A certain class of these well-behaved solutions is studied extensively. For this class, the mass of the configuration is maximized. In particular, for a surface density ρ b = 2×1014 g/cm3 we obtain a star with a maximummass of 3.47M , a radius of 15.21 km and the central redshift 1.014385.

Keywords

Apparent Horizon Crab Nebula Electric Intensity Gravitational Redshift Tangential Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. R. Oppenheimer and H. Snyder, Phys. Rev. 56, 455 (1939).ADSzbMATHCrossRefGoogle Scholar
  2. 2.
    H. Bondi, Mon. Not. Roy. Astron. Soc. 139, 499 (1969).Google Scholar
  3. 3.
    A. Mitra, Phys. Lett. B 685(1), 8 (2010).ADSCrossRefGoogle Scholar
  4. 4.
    A. Mitra, Phys. Rev. D 74(2), 024010 (2006).ADSCrossRefGoogle Scholar
  5. 5.
    A. Mitra, Mon. Not. Roy. Astoron. Soc. 369, 492 (2006).ADSCrossRefGoogle Scholar
  6. 6.
    A. Mitra and N. K. Glendenning, Mon. Not. Roy. Astron. Soc. 404, L50 (2010).ADSCrossRefGoogle Scholar
  7. 7.
    N. Pant, R. N. Mehta, and B. C. Tewari, Astrophys. Sp. Sc. 327, 279 (2010).ADSzbMATHCrossRefGoogle Scholar
  8. 8.
    N. Pant and B. C. Tewari, Astroph. Space Sci. 331, 645 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    F. Hoyle and W. A. Fowler, Nature 197, 533 (1963).ADSCrossRefGoogle Scholar
  10. 10.
    A. Einstein, Ann.Math. 40, 922 (1939).CrossRefGoogle Scholar
  11. 11.
    G. Pinheiro and R. Chan, Gen. Rel. Grav. 40, 2149 (2008).MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. 12.
    G. Pinheiro and R. Chan, Gen. Rel. Grav. 43, 1451 (2011).MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. 13.
    H. Ardavan, and M.H. Partovi, Phys. Rev.D 16, 1664 (1977).ADSCrossRefGoogle Scholar
  14. 14.
    Tsagas and G. Christos, Class. Quantum Grav. 23, 4323 (2006).ADSzbMATHCrossRefGoogle Scholar
  15. 15.
    G. Pinheiro, arXiv: 1111.4921.Google Scholar
  16. 16.
    F. de Felice et al., Mon. Not. R. Astron. Soc 277, 17 (1995).Google Scholar
  17. 17.
    B. V. Ivanov, Phys. Rev. D 65, 104001 (2002).MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    W. B. Bonnor, Mon. Not. R. Astron. Soc. 137, 239 (1965).ADSGoogle Scholar
  19. 19.
    M. S. R. Delgaty and K. Lake, Comp. Phys. Comm. 115, 395, (1998).MathSciNetADSzbMATHCrossRefGoogle Scholar
  20. 20.
    N. Pant, Astroph. Space Sci. 331, 633 (2010).ADSCrossRefGoogle Scholar
  21. 21.
    V. Canuto and J. Lodenquai, Phys. Rev. C 12, 2033 (1975).ADSCrossRefGoogle Scholar
  22. 22.
    N. Pant et al., J.Mod. Phys. 2, 1537 (2011).CrossRefGoogle Scholar
  23. 23.
    S. K. Maurya and Y. K. Gupta, Astroph. Space Sci. 332, 481 (2011).ADSCrossRefGoogle Scholar
  24. 24.
    M. J. Pant and Tewari, J. Mod. Phys. 2, 481 (2011).CrossRefGoogle Scholar
  25. 25.
    N. Pant, Astroph. Space Sci. 334, 267 (2011).ADSzbMATHCrossRefGoogle Scholar
  26. 26.
    R. Adler, J. Math. Phys. 15, 727 (1974).ADSCrossRefGoogle Scholar
  27. 27.
    M. Bejger and P. Haensel, Astron. Astrophys. 396, 917 (2002).ADSCrossRefGoogle Scholar
  28. 28.
    A. Mitra, Astroph. Space Sci. 332(43) (2011).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Department of MathematicsNational Defence AcademyKhadakwasla, Pune-23India

Personalised recommendations