Advertisement

Gravitation and Cosmology

, Volume 18, Issue 3, pp 168–174 | Cite as

Can one see the infinite future of the universe when falling to Kerr and Reissner-Nordström black holes?

  • A. A. Grib
  • A. M. Rasulova
Article

Abstract

We analyze the falling time of massless and massive particles to a black hole, using timelike and null geodesics for spaces described by the Kerr and Reissner-Nordström metrics. It is shown that an observer falling to a black hole horizon will see only a finite future of the external universe. The formula obtained can be used in assessing the difference in arrival time of photons and massive particles from Kerr and Reissner-Nordström black holes to an observer on Earth.

Keywords

Black Hole Massive Particle Active Galactic Nucleus Coordinate Time Black Hole Horizon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. P. Frolov and I. D. Novikov, Black Hole Physics, Basic Concepts and New Developments (Dordrecht: Kluwer, 1998)zbMATHGoogle Scholar
  2. 2.
    A. M. Cherepashchuk, Black Holes in the Universe (Vek 2, Fryazino, 2005, in Russian).Google Scholar
  3. 3.
    S. W. Hawking, The Universe in a Nutshell (New York: Bantam books, 2001).Google Scholar
  4. 4.
    T. Regge, Cronache Dell’ Universo (P. Boringhieri, Torino, 1981).Google Scholar
  5. 5.
    A. A. Grib and Yu. V. Pavlov, Is it possible to see the infinite future of the Universe when falling onto a black hole?, Phys.Usp. 179 (3) (2009).Google Scholar
  6. 6.
    A. A. Grib and Yu. V. Pavlov, On particles collision in the vicinity of a rotating black hole, JETP Lett. 92, 3, 147 (year???).Google Scholar
  7. 7.
    A. A. Grib and Yu. V. Pavlov, On particle collisions in the gravitational field of the Kerr black hole Astropaticle Phys. 34, 581 (2011).ADSCrossRefGoogle Scholar
  8. 8.
    G. J. M. Graves et al., Limits fromthe Hubble Space Telescope on a point source in SN 1987A, Astroph. J. 629(2), 944 (2005); astro-ph/0505066.ADSCrossRefGoogle Scholar
  9. 9.
    S. Chandrasekhar, The Mathematical Theory of Black Holes (Oxford Univ. Press, 1983).Google Scholar
  10. 10.
    L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Pergamon Press, Oxford, 1975).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Friedmann Lab. for Theoretical PhysicsSt. PeterburgRussia
  2. 2.Herzen Russian State Pedagogical UniversitySt. PetersburgRussia

Personalised recommendations