Advertisement

Gravitation and Cosmology

, Volume 18, Issue 1, pp 88–92 | Cite as

A tachyon cosmological model with non-minimal derivative coupling to gravity

  • V. K. ShchigolevEmail author
  • M. P. Rotova
Article

Abstract

We study a tachyon model with non-minimal derivative coupling to gravity in the Friedmann-Robertson-Walker (FRW) flat cosmology. We suggest a special re-definition of the tachyon field which allows us to present the tachyon field equation in a form coinciding with the equation for minimal coupling but with a re-definedHubble parameter. Two first integrals for the model equations are obtained, which can substantially simplify both the further analysis and analytical solution of the model. These integrals become trivial identities in the case of minimal coupling. The effective energy density and pressure of the tachyon field are obtained, and the necessary condition of the possibility for this model to expand with acceleration is derived.

Keywords

Dark Energy Hubble Parameter Dark Energy Model Accelerate Expansion Holographic Dark Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. G. Riess et al, Astron. J. 116, 1009 (1999).ADSCrossRefGoogle Scholar
  2. 2.
    S. Perlmutter et al, Astrophys. J. 517, 565 (1999).ADSCrossRefGoogle Scholar
  3. 3.
    R. A. Knop et al, Ap. J. 598, 102 (2003).ADSCrossRefGoogle Scholar
  4. 4.
    C. L. Bennett et al., Astrophys. J. Suppl. 148, 1 (2003).ADSCrossRefGoogle Scholar
  5. 5.
    M. Tegmark et al. [SDSS Collaboration], Phys. Rev. D 69, 103505 (2004).ADSCrossRefGoogle Scholar
  6. 6.
    R.R. Caldwell, R. Dave, and P. J. Steinhardt, Phys. Rev. Lett. 80, 1582 (1998).ADSCrossRefGoogle Scholar
  7. 7.
    A. Sen, JHEP 0207, 065 (2002).ADSCrossRefGoogle Scholar
  8. 8.
    F. Piazza and S. Tsujikawa, JCAP 0407, 004 (2004).ADSGoogle Scholar
  9. 9.
    B. Feng, X. Wang, and X. Zhang, Phys. Lett. B 607, 35 (2005).ADSCrossRefGoogle Scholar
  10. 10.
    M. R. Setare, Phys. Lett. B 642, 1 (2006).MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    M. R. Setare, J. Sadeghi, and A. R. Amani, Phys. Lett. B 673, 241 (2009).ADSCrossRefGoogle Scholar
  12. 12.
    E. N. Saridakis, Phys. Lett. B 660, 138 (2008).MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    E. Elizalde, S. Nojiri, S. D. Odintsov, and P. Wang, Phys. Rev. D 71, 103504 (2005).ADSCrossRefGoogle Scholar
  14. 14.
    M. R. Setare, Phys. Lett. B 653, 116 (2007).MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    Y.-S. Piaoa, Q.-G. Huangc, et al., Phys. Lett. B 570, 1 (2003).ADSCrossRefGoogle Scholar
  16. 16.
    Z. G. Huang, X. H. Li, and Q. Q. Sun, Astrophys. Space Sci. 310, 53–57 (2007).ADSCrossRefGoogle Scholar
  17. 17.
    M. R. Setare, J. Sadeghi, and A. Banijamali, Phys. Lett. B 669, 9 (2008).MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    R. C. de Souza and G. M. Kremer, Class. Quant. Grav. 26, 135008 (2009).ADSCrossRefGoogle Scholar
  19. 19.
    J. Sadeghi, M. R. Setare, et al., Phys. Lett. B 662, 92 (2008).MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    A. A. Sen and N. Chandrachani Devi, Gen. Relat. Grav. 42(4), 821 (2010).ADSzbMATHCrossRefGoogle Scholar
  21. 21.
    E. N. Saridakis and S. V. Sushkov, Phys. Rev. D 81, 083510 (2010).ADSCrossRefGoogle Scholar
  22. 22.
    A. B. Balakin and A. E. Zayats, Phys. Lett. B 644, 294 (2007).MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    A. B. Balakin, H. Dehnen, and A. E. Zayats, Phys. Rev. D 76, 124011 (2007).ADSCrossRefGoogle Scholar
  24. 24.
    C. Germani and A. Kehagias, Phys. Rev. Lett. 105, 011302 (2010).ADSCrossRefGoogle Scholar
  25. 25.
    V. K. Shchigolev and M. P. Rotova, Modelling Tachyon Cosmology with Non-Minimal Coupling to Gravity, Arxiv: 1105.4536.Google Scholar
  26. 26.
    I. Quiros, T. Gonzalezm et al., Class. Quantum Grav. 27, 215021 (2010).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Department of Theoretical PhysicsUlyanovsk State UniversityUlyanovskRussia

Personalised recommendations