Advertisement

Gravitation and Cosmology

, Volume 18, Issue 1, pp 32–38 | Cite as

Gluon matter plasma in the compact star core within a fluid QCD model

  • C. S. Nugroho
  • A. O. Latief
  • T. P. Djun
  • L. T. Handoko
Article

Abstract

The structure of a compact star core filled with gluon matter plasma is investigated within the fluid-like QCD framework. The energy-momentum tensor, density and pressure relevant to gluonic plasma having the nature of a fluid bulk of gluon sea are derived within the model. It is shown that the model provides a new equation of state for the perfect fluid with only a single parameter of fluid distribution, ϕ(x). The results are applied to constructing the equation of state describing the gluonic plasma dominated compact star core. The equations of pressure and density distribution are solved analytically for a small compact star core radius. The phase transition of the plasma near the core surface is also discussed.

Keywords

Large Hadron Collider Compact Star Core Surface Star Collaboration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Adler et al. (STARCollaboration), Phys.Rev.C 66, 034904 (2002).ADSCrossRefGoogle Scholar
  2. 2.
    K. Adeox et al. (PHENIX Collaboration), Nucl. Phys. A 757, 184 (2005).ADSCrossRefGoogle Scholar
  3. 3.
    E. Shuryak, Nucl. Phys. A 774, 387 (2006).ADSCrossRefGoogle Scholar
  4. 4.
    I. Bouras et al., Phys. Rev. Lett. 103, 032301 (2009).ADSCrossRefGoogle Scholar
  5. 5.
    P. Romatschke, Int. J.Mod. Phys. E 19, 1 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    M. G. Alford, K. Rajagopal, T. Schaefer, and A. Schmitt, Rev. Mod. Phys. 80, 1455 (2008). DOI 10.1103/RevModPhys.80.1455ADSCrossRefGoogle Scholar
  7. 7.
    M. Harrison, T. Ludlam, and S. Ozaki, Nucl. Inst. Meth. Phys. Res. A 499, 235 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    D. Teaney, J. Lauret, and E. V. Shuryak, Phys. Rev. Lett. 86, 4783 (2001).ADSCrossRefGoogle Scholar
  9. 9.
    P. Huovinen et al., Phys. Lett. B 503, 58 (2001).ADSCrossRefGoogle Scholar
  10. 10.
    P. F. Kolb et al., Nucl. Phys. A 696, 197 (2001).ADSCrossRefGoogle Scholar
  11. 11.
    P. F. Kolb and R. Rapp, Phys. Rev. C 67, 044903 (2003).ADSCrossRefGoogle Scholar
  12. 12.
    T. Hirano and K. Tsuda, Phys. Rev. C 66, 054905 (2002).ADSCrossRefGoogle Scholar
  13. 13.
    R. Baier and P. Romatschke, Eur. Phys. J. C 51, 677 (2007).ADSCrossRefGoogle Scholar
  14. 14.
    J. Jowett, LHC Lead Ion Beam Commissioning in LHC Design Report, Tech. rep., CERN (2009).Google Scholar
  15. 15.
    J. Adams et al., (STAR Collaboration), Phys. Rev. Lett. 91, 172302 (2003).ADSCrossRefGoogle Scholar
  16. 16.
    A. Adare et al., (PHENIX Collaboration), Phys. Rev. Lett. 101, 232301 (2008).ADSCrossRefGoogle Scholar
  17. 17.
    S. Gottlieb, J. Phys. Conf. Ser. 78, 012023 (2007).ADSCrossRefGoogle Scholar
  18. 18.
    P. Petreczky, Europ. Phys. J. Special Topics 155, 1951 (2008).Google Scholar
  19. 19.
    S. S. Adler et al. (PHENIXCollaboration), Phys.Rev. Lett 91, 182301 (2003).ADSCrossRefGoogle Scholar
  20. 20.
    J. Adams et al. (STAR Collaboration), Phys. Rev. Lett. 92, 052302 (2004).ADSCrossRefGoogle Scholar
  21. 21.
    B. B. Back et al. (Phobos Collaboration), Phys. Rev. C 72, 051901 (2005).ADSCrossRefGoogle Scholar
  22. 22.
    W. A. Zajc, Nucl. Phys. A 805, 283 (2008).ADSCrossRefGoogle Scholar
  23. 23.
    U. Heinz, Phys. Rev. Lett. 51, 351 (1983).ADSCrossRefGoogle Scholar
  24. 24.
    D. D. Holm and B. A. Kupershmidt, Phys. Rev. D 30, 2557 (1984).MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    Y. Choquet-Bruhat, J.Math. Phys. 33, 1782 (1992).MathSciNetADSzbMATHCrossRefGoogle Scholar
  26. 26.
    J. P. Blaizot and E. Iancu, Nucl. Phys. B 421, 565 (1994).ADSCrossRefGoogle Scholar
  27. 27.
    B. Bistrovic et al., Phys. Rev. D 67, 025013 (2003).MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    S. M. Mahajan, Phys. Rev. Lett. 90, 035001 (2003).ADSCrossRefGoogle Scholar
  29. 29.
    C. Manuel and S. Mrowczynski, Phys. Rev. D 74, 105003 (2006).ADSCrossRefGoogle Scholar
  30. 30.
    B. A. Bambah, S. M. Mahajan, and C. Mukku, Phys. Rev. Lett. 97, 072301 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    Marmanis, Phys. of Fluid 10, 1428 (1998).MathSciNetADSzbMATHCrossRefGoogle Scholar
  32. 32.
    A. Sulaiman, A. Fajarudin, T.P. Djun, and L.T. Handoko, Int. J. Mod. Phys.A24, 3630 (2009).ADSzbMATHCrossRefGoogle Scholar
  33. 33.
    T. P. Djun and L. T. Handoko, in: Proceeding of the Conference in Honour of Murray Gell-Mann’s 80th Birthday: Quantum Mechanics, Elementary Particles, Quantum Cosmology and Complexity (2011), pp. 419–425. DOI 10.1142/97898143356140040.Google Scholar
  34. 34.
    R. C. Tolman, Proc. Nat. Acad. Sci. 20, 169 (1934).ADSCrossRefGoogle Scholar
  35. 35.
    J. R. Oppenheimer and G. M. Volkoff, Phys. Rev. 55, 374 (1939).ADSzbMATHCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • C. S. Nugroho
    • 1
  • A. O. Latief
    • 1
  • T. P. Djun
    • 2
  • L. T. Handoko
    • 1
    • 2
  1. 1.Department of PhysicsUniversity of IndonesiaDepokIndonesia
  2. 2.Group for Theoretical and Computational Physics, Research Center for PhysicsIndonesian Institute of SciencesTangerangIndonesia

Personalised recommendations