Gravitation and Cosmology

, Volume 18, Issue 1, pp 6–16 | Cite as

Gravitational instability of perturbations in a background nonlinear nonstationary model of a disk-like system. II. Large-scale tesseral oscillation modes

  • K. T. MirtadjievaEmail author


We study the gravitational instability of large-scale tesseral perturbation modes against the background of the previously built model od a disk galaxy, nonlinearly pulsating and anisotropic in velocities. This model rests on a nonstationary generalization of the well-known equilibrium isotropic disk model due to Bisnovaty-Kogan and Zeldovich. We have obtained the corresponding nonstationary analogs of the dispersion equations for the five basic tesseral perturbation modes. The results are presented in the form of critical dependences of the initial virial ratio on the superposition parameter for different degrees of rotation. We have also carried out a comparative analysis of the instability increments for all large-scale perturbation modes.


Spiral Galaxy Instability Region Gravitational Instability Disk Galaxy Oscillatory Instability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. T. Mirtadjieva, Grav. Cosmol. 15(3), 278 (2009).ADSzbMATHCrossRefGoogle Scholar
  2. 2.
    G. S. Bisnovaty-Kigan and Ya. B. Zel’dovich, Astrofizika 6, 387 (1970).ADSGoogle Scholar
  3. 3.
    S. N. Nuritdinov and M. Usarova, in: Problems of Physics and Dynamics of Stellar Systems (Tashken, 1989), p. 49.Google Scholar
  4. 4.
    R. Buta, Astrophys. J. Suppl. Ser. 96, 39 (1995).ADSCrossRefGoogle Scholar
  5. 5.
    C. J. Jog and F. Combes, Phys. Rep. 471(2), 75 (2009).ADSCrossRefGoogle Scholar
  6. 6.
    D. Zaritsky and H.W. Rix, Ap. J. 477, 118 (1997).ADSCrossRefGoogle Scholar
  7. 7.
    K. T. Mirtadjieva, S. N. Nuritdinov, Zh. K. Ruzibaev, and Mukammad Khalid, Astrofizika, 2011, in press.Google Scholar
  8. 8.
    S. N. Nuritdinov, K. T. Mirtadjieva, and Miriam Sultana, Astrofizika 51, 487 (2008).Google Scholar
  9. 9.
    V. A. Antonov, Uchyonye Zapiski LGU 32, 79 (1976).MathSciNetGoogle Scholar
  10. 10.
    A. M. Fridman and V. L. Polyachenko, Physics of Gravitating Systems (New-York: Springer-Verlag, 1984).Google Scholar
  11. 11.
    I. G. Malkin, Theory of the Stability of Motion (Nauka, Moscow, 1987).Google Scholar
  12. 12.
    G. S. Bisnovaty-Kigan, Astrofizika 35, 271 (1991).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Astronomical Institute of the Academy of Sciences of UzbekistanTashkentUzbekistan

Personalised recommendations