Gravitation and Cosmology

, Volume 18, Issue 1, pp 43–53 | Cite as

Cosmological dynamics of fourth-order gravity with a Gauss-Bonnet term

  • M. M. Ivanov
  • A. V. Toporensky


We consider the cosmological dynamics of fourth-order gravity with both f(R) and Φ(G) corrections to the Einstein gravity (G is the Gauss-Bonnet invariant). The particular case for which both terms are equally important on power-law solutions is described. These solutions and their stability are studied using the dynamic system approach. We also discuss the condition of existence and stability of a de Sitter solution in a more general situation of power-law f and Φ.


Stationary Point Power Index Einstein Gravity Additional Relation Sitter Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Perlmutter et al., Astrophys. J. 517, 565 (1999).ADSCrossRefGoogle Scholar
  2. 2.
    A. G. Riess et al., Astron. J. 116, 1009 (1998).ADSCrossRefGoogle Scholar
  3. 3.
    J. Barrow and S. Hervik, Phys. Rev. D 74, 124017 (2006).MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    A. Toporensky and P. Tretyakov, Int. J. Mod. Phys. D 16, 1075 (2007).MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. 5.
    S. Kawai and J. Soda, Phys. Rev. D 59, 063506 (1999).ADSCrossRefGoogle Scholar
  6. 6.
    H. Yajima, K.-I. Maeda, and H. Okhubo, Phys. Rev. D 62, 024020 (2000).MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    A. Toporensky and S. Tsujikawa, Phys. Rev. D 65, 123509 (2002).MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    S. Nojiri and S. Odintsov, Phys. Lett. B 631, 1 (2005).MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    G. Cognola, E. Elizalde, S. Nojiri, S. Odintsov, and S. Zerbini, Phys. Rev D 73, 084007 (2006).ADSCrossRefGoogle Scholar
  10. 10.
    B. Li, J. Barrow, and D. Mota, Phys. Rev. D 76, 044027 (2007).MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    A. De Felice and S. Tsujikawa, Phys. Lett. B 675, 1 (2009).ADSCrossRefGoogle Scholar
  12. 12.
    K. Bamba, S. D. Odintsov, L. Sebastiani, and S. Zerbini, Eur. Phys. J. C 67, 295 (2010).ADSCrossRefGoogle Scholar
  13. 13.
    A. De Felice, J. M. Gerard, and T. Suyama, Phys. Rev. D 82, 063526 (2010).ADSCrossRefGoogle Scholar
  14. 14.
    A. De Felice, T. Suyama, and T. Tanaka, Phys. Rev. D 83, 104035 (2011).ADSCrossRefGoogle Scholar
  15. 15.
    A. De Felice and T. Tanaka, Progr. Theor. Phys. 124, 503 (2010).ADSzbMATHCrossRefGoogle Scholar
  16. 16.
    M. Alimahammadi and A. Ghalee, Phys. Rev D 80, 043006 (2009).ADSCrossRefGoogle Scholar
  17. 17.
    S. Nojiri and S. Odintsov, arXiv: 1011.0544.Google Scholar
  18. 18.
    L. Amendola, R. Gannouji, D. Polarski, and S. Tsujikawa, Phys. Rev. D 75, 083504 (2007).ADSCrossRefGoogle Scholar
  19. 19.
    S. Carloni, K. S. Dunsby, S. Capozziello, and A. Troisi, Class. Quant. Grav. 22, 4839 (2005).MathSciNetADSzbMATHCrossRefGoogle Scholar
  20. 20.
    S. Carloni, A. Troisi, and P. K. S. Dunsby, Gen. Rel. Grav. 41, 1757 (2009); 083504 (2007)MathSciNetADSzbMATHCrossRefGoogle Scholar
  21. 21.
    M. Skugoreva, A. Toporensky, and P. Tretyakov, Grav. Cosmol. 17, 110 (2011).ADSzbMATHCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • M. M. Ivanov
    • 1
    • 2
  • A. V. Toporensky
    • 2
  1. 1.Physical FacultyMoscow State UniversityMoscowRussia
  2. 2.Sternberg Astronomical InstituteMoscow State UniversityMoscowRussia

Personalised recommendations