Gravitation and Cosmology

, Volume 18, Issue 1, pp 70–75 | Cite as

On collisions with unlimited energies in the vicinity of Kerr and Schwarzschild black hole horizons

Article

Abstract

Two-particle collisions close to the horizon of a rotating non-extremal Kerr black hole and a Schwarzschild black hole are analyzed. For the case of multiple collisions, it is shown that high energy in the center-of-mass frame occurs due to a great relative velocity of two particles and a large Lorentz factor. We analyze the dependence of the relative velocity on the distance to the horizon and calculate the motion time from the point in the accretion disc to the point of scattering with large energy as well as the time of back motion to the Earth. It is shown that they have a reasonable order.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Grib and Yu. V. Pavlov, Mod. Phys. Lett. A 23, 1151 (2008).ADSMATHCrossRefGoogle Scholar
  2. 2.
    The Pierre Auger Collaboration, Science 318, 938 (2007); Astropart. Phys. 34, 314 (2010).Google Scholar
  3. 3.
    M. Banados, J. Silk, and S. M. West, Phys. Rev. Lett. 103, 111102 (2009).ADSCrossRefGoogle Scholar
  4. 4.
    A. A. Grib and Yu. V. Pavlov, Pis’ma v ZhETF 92, 147 (2010) [JETP Lett. 92, 125 (2010)].Google Scholar
  5. 5.
    A. A. Grib and Yu. V. Pavlov, Astropart. Phys. 34, 581 (2011).ADSCrossRefGoogle Scholar
  6. 6.
    A. A. Grib and Yu. V. Pavlov, On Particle Collisions near Kerr Black Holes, arXiv: 1007.3222.Google Scholar
  7. 7.
    A. A. Grib and Yu. V. Pavlov, Grav. Cosmol. 17, 42 (2011).ADSMATHCrossRefGoogle Scholar
  8. 8.
    O. B. Zaslavskii, Class. Quantum Grav. 28, 105010 (2011).MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    O. B. Zaslavskii, Phys. Rev. D 82, 083004 (2010); T. Harada and M. Kimura, Phys. Rev. D 83, 024002 (2011).MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    O. B. Zaslavskii, Phys. Rev. D 84, 024007 (2011).ADSCrossRefGoogle Scholar
  11. 11.
    V. P. Frolov and I. D. Novikov, Black Hole Physics: Basic Concepts and New Developments (Kluwer Acad. Publ., Dordrecht, 1998).MATHGoogle Scholar
  12. 12.
    T. Harada and M. Kimura, Phys. Rev. D 83, 084041 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    M. Banados, B. Hassanain, J. Silk, and S. M. West, Phys. Rev. D 83, 023004 (2011).ADSCrossRefGoogle Scholar
  14. 14.
    E. Berti, V. Cardoso, L. Gualtieri, F. Pretorius and U. Sperhake, Phys. Rev. Lett. 103, 239001 (2009).ADSCrossRefGoogle Scholar
  15. 15.
    T. Jacobson and T. P. Sotiriou, Phys. Rev. Lett. 104, 021101 (2010).ADSCrossRefGoogle Scholar
  16. 16.
    K. S. Thorne, Astrophys. J. 191, 507 (1974).ADSCrossRefGoogle Scholar
  17. 17.
    L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Pergamon Press, Oxford, 1983).Google Scholar
  18. 18.
    O. B. Zaslavskii, Pis’ma v ZhETF 92 635 (2010) [JETP Lett. 92 571 (2010)].Google Scholar
  19. 19.
    A. N. Baushev, Int. J.Mod. Phys. D 18, 1195 (2009).MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • A. A. Grib
    • 1
    • 2
  • Yu. V. Pavlov
    • 1
    • 3
  • O. F. Piattella
    • 4
    • 5
  1. 1.A. Friedmann Laboratory for Theoretical PhysicsSt. PetersburgRussia
  2. 2.Theoretical Physics and Astronomy DepartmentThe Herzen UniversitySt. PetersburgRussia
  3. 3.Institute of Mechanical EngineeringRussian Acad. Sci.St. PetersburgRussia
  4. 4.Dep. de FísicaUniversidade Federal do Espírito SantoVitória, ESBrazil
  5. 5.INFN sezione di MilanoMilanoItaly

Personalised recommendations