Gravitation and Cosmology

, Volume 17, Issue 4, pp 349–354 | Cite as

On a cosmological invariant as an observational probe in the early universe

Article

Abstract

k-essence scalar field models are usually taken to have Lagrangians of the form L = −V (φ)F(X) with F some general function of X = ▿μφμϕ. Under certain conditions, this Lagrangian can take the form of that of an oscillator with time-dependent frequency. The Ermakov invariant for a time-dependent oscillator in a cosmological scenario then leads to an invariant quadratic form involving the Hubble parameter and a logarithm of the scale factor. In principle, this invariant can lead to further observational probes for the early Universe. Moreover, if such an invariant can be observationally verified, then the presence of dark energy will also be indirectly confirmed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. P. Ermakov, Univ. Izv. Kiev 20, 1 (1880).Google Scholar
  2. 2.
    H. R. Lewis, Phys. Rev. Lett. 18, 510 (1967).ADSCrossRefGoogle Scholar
  3. 3.
    H. R. Lewis, Jour. Math. Phys. 9, 1976 (1968).ADSMATHCrossRefGoogle Scholar
  4. 4.
    H. R. Lewis and W. B. Riesenfeld, J. Math. Phys. 10, 1458 (1969).MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    W. E. Milne, Phys. Rev. 35, 863 (1930).ADSCrossRefGoogle Scholar
  6. 6.
    E. Pinney, Proc. Am. Math. Soc. 1, 681 (1950).MathSciNetMATHGoogle Scholar
  7. 7.
    D. Gangopadhyay and S. Mukherjee, Phys. Lett. B 665, 121 (2008).ADSCrossRefGoogle Scholar
  8. 8.
    D. Gangopadhyay, Grav. Cosmol. 16, 231 (2010).ADSCrossRefMATHGoogle Scholar
  9. 9.
    R. J. Scherrer, Phys. Rev. Lett. 93, 011301 (2004).ADSCrossRefGoogle Scholar
  10. 10.
    C. Armendariz-Picon, T. Damour, and V. Mukhanov, Phys. Lett. B 458, 209 (1999).MathSciNetADSMATHCrossRefGoogle Scholar
  11. 11.
    J. Garriga and V. F. Mukhanov, Phys. Lett. B 458, 219 (1999).MathSciNetADSMATHCrossRefGoogle Scholar
  12. 12.
    T. Chiba, T. Okabe, and M. Yamaguchi, Phys. Rev. D 62, 023511 (2000).ADSCrossRefGoogle Scholar
  13. 13.
    C. Armendariz-Picon, V. Mukhanov, and P. J. Steinhardt, Phys. Rev. Lett. 85, 4438 (2000).ADSCrossRefGoogle Scholar
  14. 14.
    C. Armendariz-Picon, V. Mukhanov, and P. J. Steinhardt, Phys. Rev. D 63, 103510 (2001).ADSCrossRefGoogle Scholar
  15. 15.
    T. Chiba, Phys. Rev. D 66, 063514 (2002).ADSCrossRefGoogle Scholar
  16. 16.
    L. P. Chimento, Phys. Rev. D 69, 123517 (2004).MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    V. Sahni, Lect. Notes Phys. 653, 141 (2004).ADSGoogle Scholar
  18. 18.
    T. Padmanabhan, AIP Conf. Proc. 843, 111 (2006).ADSCrossRefGoogle Scholar
  19. 19.
    E. J. Copeland, M. Sami, and S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006).MathSciNetADSMATHCrossRefGoogle Scholar
  20. 20.
    M. Malquarti, E. J. Copeland, A. R. Liddle, and M. Trodden, Phys. Rev. D 67, 123503 (2003).MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    M. Malquarti, E. J. Copeland, and A. R. Liddle, Phys. Rev. D 68, 023512 (2003).MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    L. Mingzhe and X. Zhang, Phys. Lett. B 573, 20 (2003).ADSCrossRefGoogle Scholar
  23. 23.
    J. M. Aguirregabiria, L. P. Chimento, and R. Lazkoz, Phys. Rev. D 70, 023509 (2004).ADSCrossRefGoogle Scholar
  24. 24.
    L. P. Chimento and R. Lazkoz, Phys. Rev. D 71, 023505 (2005).MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    L. P. Chimento, M. Forte, and R. Lazkoz, Mod. Phys. Lett. A 20, 2075 (2005).ADSMATHCrossRefGoogle Scholar
  26. 26.
    R. Lazkoz, Int. J. Mod. Phys. D 14, 635 (2005).ADSMATHCrossRefGoogle Scholar
  27. 27.
    H. Kim, Phys. Lett. B 606, 223 (2005).ADSCrossRefGoogle Scholar
  28. 28.
    J. M. Aguirregabiria, L. P. Chimento, and R. Lazkoz, Phys. Lett. B 631, 93 (2005).ADSCrossRefGoogle Scholar
  29. 29.
    H. Wei and R. G. Cai, Phys. Rev. D 71, 043504 (2005).ADSCrossRefGoogle Scholar
  30. 30.
    C. Armendariz-Picon and E. A. Lim, JCAP 0508, 7 (2005).ADSGoogle Scholar
  31. 31.
    L. R. Abramo and N. Pinto-Neto, Phys. Rev. D 73, 063522 (2006).ADSCrossRefGoogle Scholar
  32. 32.
    A. D. Rendall, Class. Quantum Grav. 23, 1557 (2006).MathSciNetADSMATHCrossRefGoogle Scholar
  33. 33.
    V. Mukhanov, Physical Foundations of Cosmology (Cambridge University Press, 2005), pp. 236–238.Google Scholar
  34. 34.
    M. V. Berry, Proc. R. Soc. A 392, 45 (1984).ADSMATHCrossRefGoogle Scholar
  35. 35.
    M. V. Berry, J. Phys. A 18, 15 (1985).MathSciNetADSMATHCrossRefGoogle Scholar
  36. 36.
    D. A. Morales, J. Phys. A 21, L889 (1988).ADSCrossRefGoogle Scholar
  37. 37.
    P. G. L. Leach, J. Phys. A 23, 2695 (1990).MathSciNetADSMATHCrossRefGoogle Scholar
  38. 38.
    Abhijit Bandyopadhyay, Debashis Gangopadhyay and Arka Moulik, The k-essence Scalar Field in the Context of Supernova Ia Observations, arXiv: 1102.3554.Google Scholar
  39. 39.
    S. Perlmutter et al., Astrophys. J. 517, 565 (1999); Astron. J. 116, 1009 (1998); Astrophys. J. 607, 665 (2004); Astrophys. J. 659, 98 (2007); Astron. Astrophys. 447, 31 (2006).ADSCrossRefGoogle Scholar
  40. 40.
    A. G. Riess et al., Astron. J. 116, 1009 (1998); Astrophys. J. 607, 665 (2004); Astrophys. J. 659, 98 (2007); W. M. Wood-Vasey et al., Astrophys. J. 666, 694 (2007).ADSCrossRefGoogle Scholar
  41. 41.
    M. Hicken et al., Astrophys. J. 700, 1097 (2009).ADSCrossRefGoogle Scholar
  42. 42.
    M. Kowalski et al., Astrophys. J. 686, 749 (2008).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.S. N. Bose National Centre for Basic SciencesSalt Lake, KolkataIndia
  2. 2.Dharsa Mihirlal Khan Institution [H.S]Dist: HowrahIndia

Personalised recommendations