Advertisement

Gravitation and Cosmology

, Volume 17, Issue 4, pp 314–323 | Cite as

On canonical transformations between equivalent hamiltonian formulations of general relativity

  • A. M. FrolovEmail author
  • N. Kiriushcheva
  • S. V. Kuzmin
Article

Abstract

Two Hamiltonian formulations of general relativity, due to Pirani, Schild and Skinner (Phys. Rev. 87, 452, 1952) and Dirac (Proc. Roy. Soc. A 246, 333, 1958), are considered. Both formulations, despite having different expressions for the constraints, allow one to derive four-dimensional diffeomorphism invariance. The relation between these two formulations at all stages of the Dirac approach to constrained Hamiltonian systems is analyzed. It is shown that the complete sets of their phase-space variables are related by a transformation which satisfies the ordinary condition of canonicity known for unconstrained Hamiltonians and, in addition, converts one total Hamiltonian into another, thus preserving form-invariance of generalized Hamiltonian equations for the constrained systems.

Keywords

Gauge Transformation Poisson Bracket Canonical Transformation Hamiltonian Formulation Singular System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. J. Isham and K. V. Kuchar, Ann. Phys. 164, 316 (1985).MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    B. S. DeWitt, Phys. Rev. 160, 1113 (1967).ADSzbMATHCrossRefGoogle Scholar
  3. 3.
    J. Pullin, in: “Cosmology and Gravitation: Xth Brazilian School of Cosmology and Gravitation; 25th Anniversary (1977–2002)”(eds. M. Novello and S. E. P. Bergliaffa, AIP conference proceedings, 2003), vol. 668, p. 141; gr-qc/0209008.Google Scholar
  4. 4.
    P. G. Bergmann and A. Komar, Int. J. Theor. Phys. 5, 15 (1972).MathSciNetCrossRefGoogle Scholar
  5. 5.
    J. M. Pons, Class. Quantum Grav. 20, 3279 (2003).MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. 6.
    P. Mukherjee and A. Saha, Int. J. Mod. Phys. A 24(23), 4305 (2009).MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. 7.
    F. A. E. Pirani, A. Schild and S. Skinner, Phys. Rev. 87, 452 (1952).MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. 8.
    P. A. M. Dirac, Proc. Roy. Soc. A 246, 333 (1958).MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. 9.
    N. Kiriushcheva, S. V. Kuzmin, C. Racknor, and S. R. Valluri, Phys. Lett. A 372, 5101 (2008).MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. 10.
    N. Kiriushcheva and S. V. Kuzmin, Central Eur. J. Phys. 9(3), 576 (2011).ADSCrossRefGoogle Scholar
  11. 11.
    R. Arnowitt, S. Deser and C. W. Misner, in: “Gravitation: An Introduction to Current Research” (ed. L. Witten, Wiley, New York, 1962), p. 227.Google Scholar
  12. 12.
    R. Banerjee, H. J. Rothe, and K. D. Rothe, Phys. Lett. B 479, 429 (2000).MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. 13.
    L. Castellani, Ann. Phys. 143, 357 (1982).MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    R. Banerjee, S. Gangopadhyay, P. Mukherjee, and D. Roy, JHEP 1002, 075 (2010).MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    D. M. Gitman and I. V. Tyutin, Quantization of Fields with Constraints (Springer, Berlin, 1990).zbMATHCrossRefGoogle Scholar
  16. 16.
    N. Kiriushcheva and S. V. Kuzmin, Eur. Phys. J. C 70, 389 (2010).ADSCrossRefGoogle Scholar
  17. 17.
    K.R. Green, N. Kiriushcheva, and S. V. Kuzmin, Eur. Phys. J. C 71, 1678 (2011).ADSCrossRefGoogle Scholar
  18. 18.
    L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Fourth ed., Pergamon Press, Oxford, 1975).Google Scholar
  19. 19.
    M. Carmeli, Classical Fields: General Relativity and Gauge Theory (World Scientific, New Jersey, 2001).zbMATHGoogle Scholar
  20. 20.
    N. Kiriushcheva and S. V. Kuzmin, Mod. Phys. Lett. A 21, 899 (2006).MathSciNetADSzbMATHCrossRefGoogle Scholar
  21. 21.
    R. N. Ghalati, N. Kiriushcheva, and S. V. Kuzmin, Mod. Phys. Lett. A 22, 17 (2007).MathSciNetADSzbMATHCrossRefGoogle Scholar
  22. 22.
    A. Einstein, Sitzungsber. preuss. Akad. Wiss., Phys.-Math. 1, 414 (1925); The Complete Collection of Scientific Papers (Nauka, Moscow, 1966) vol. 2, p. 171.Google Scholar
  23. 23.
    A. Unzicker and T. Case, physics/0503046; http://www.alexander-unzicker.de/ae1930.html.
  24. 24.
    N. Kiriushcheva and S. V. Kuzmin, Ann. Phys. 321, 958 (2006).MathSciNetADSzbMATHCrossRefGoogle Scholar
  25. 25.
    T. P. Shestakova, Class. Quantum Grav. 28, 055009 (2011).MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    T. P. Shestakova, Grav. Cosmol. 17, 67 (2011).MathSciNetADSCrossRefzbMATHGoogle Scholar
  27. 27.
    P. A. M. Dirac, Lectures on Quantum Mechanics (Belfer Graduate School of Sciences, Yeshiva University, New York, 1964).Google Scholar
  28. 28.
    N. Kiriushcheva, P. G. Komorowski, and S. V. Kuzmin, arXiv: 1107.2449.Google Scholar
  29. 29.
    N. Kiriushcheva, P. G. Komorowski, and S. V. Kuzmin, arXiv: 1107.2981.Google Scholar
  30. 30.
    B. A. Fayzullaev, Int. J. Mod. Phys. A 25(21), 4101 (2010).MathSciNetADSzbMATHCrossRefGoogle Scholar
  31. 31.
    F. Cianfrani, M. Lulli, and G. Montani, arXiv:1104.0140.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of Western OntarioLondonCanada
  2. 2.Faculty of Arts and Social ScienceHuron University CollegeLondonCanada

Personalised recommendations