Advertisement

Teleparallel formalism of Galilean gravity

  • S. C. UlhoaEmail author
  • F. C. Khanna
  • A. E. Santana
Article

Abstract

A pseudo-Riemannian manifold is introduced, with light-cone coordinates in (4 + 1)-dimensional space-time, to describe a Galilei covariant gravity. The notion of 5-bein and torsion are developed, and a Galilean version of teleparallelism is constructed in this manifold. The formalism is applied to two spherically symmetric configurations. The first one is an ansatz which is inferred by following the Schwarzschild solution in general relativity. The second one is a solution of Galilean-covariant equations. In addition, this Galilei teleparallel approach provides a prescription for coupling of the 5-bein field to the Galilean-covariant Dirac field.

Keywords

Curvature Tensor Lagrangian Density Torsion Tensor Local Reference Frame Galilei Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems (Dover Publications, 2003).Google Scholar
  2. 2.
    S. Weinberg, Phys. Rev. 150, 1313 (1966).ADSCrossRefGoogle Scholar
  3. 3.
    L. Susskind, Phys. Rev. 165, 1535 (1968).ADSCrossRefGoogle Scholar
  4. 4.
    D. Flory, Phys. Rev. D 1, 2795 (1970).ADSCrossRefGoogle Scholar
  5. 5.
    J. B. Kogut and D. E. Soper, Phys. Rev. D 1, 2901 (1970).ADSCrossRefGoogle Scholar
  6. 6.
    J. Beckers and M. Jaspers, Physica A: Statistical and Theoretical Physics 79, 338 (1975).MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    N. E. Ligterink and B. L. G. Bakker, Phys. Rev. D 52,5954 (1995).ADSCrossRefGoogle Scholar
  8. 8.
    N. C. J. Schoonderwoerd and B. L. G. Bakker, Phys. Rev. D 57, 4965 (1998).ADSCrossRefGoogle Scholar
  9. 9.
    N. C. J. Schoonderwoerd and B. L. G. Bakker, Phys. Rev. D 58, 025013 (1998).ADSCrossRefGoogle Scholar
  10. 10.
    A. Harindranath, L. Martinovic, and J. P. Vary, Phys. Rev. D 62, 105015 (2000).ADSCrossRefGoogle Scholar
  11. 11.
    M. de Montigny, F. C. Khanna, A. E. Santana, and E. S. Santos, J. Phys. A: Math. Gen. 34, 8901 (2001).ADSzbMATHCrossRefGoogle Scholar
  12. 12.
    Y. Brihaye, C. Gonera, S. Giller, and P. Kosinski, hepth/9503046.Google Scholar
  13. 13.
    C. R. Hagen, Phys. Rev. D 5, 377 (1972).ADSCrossRefGoogle Scholar
  14. 14.
    Y. Nishida and D. T. Son, Phys. Rev. D 76, 086004 (2007).MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    K. Balasubramanian and J. McGreevy, Phys. Rev. Lett. 101, 061601 (2008).MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    D. T. Son, Phys. Rev. D 78, 046003 (2008).MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    F. C. Khanna, A. E. Santana, A. Matos Neto, J. D.M. Vianna, and T. Kopf, hep-th/9812222.Google Scholar
  18. 18.
    E. S. Santos, M. de Montigny, F. C. Khanna, and A. E. Santana, J. Phys. A: Math. Gen. 37, 9771 (2004).ADSzbMATHCrossRefGoogle Scholar
  19. 19.
    S. C. Ulhoa, F. C. Khanna, and A. E. Santana, Int. J. Mod. Phys. A 24, 5287 (2009), arXiv: 0902.2023.MathSciNetADSzbMATHCrossRefGoogle Scholar
  20. 20.
    R. Cuzinatto, P. Pompeia, M. de Montigny, and F. Khanna, Phys. Lett. B 680, 98 (2009).MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    F. W. Hehl, J. Lemke, and E. W. Mielke, in: Geometry and Theoretical Physics, ed. by J. Debrus and A. C. Hirshfeld (Springer, Berlin, 1991).Google Scholar
  22. 22.
    F. W. Hehl, J. D. McCrea, E. W. Mielke, and Y. Ne’eman, Metric-affine Gauge Theory of Gravity: Field Equations, Noether Identities, World Spinors, and Breaking of Dilation Invariance (1994).Google Scholar
  23. 23.
    J. W. Maluf, Annalen Phys. 14, 723 (2005), grqc/0504077.zbMATHCrossRefGoogle Scholar
  24. 24.
    J. Maluf, S. Ulhoa, F. Faria, and J. da Rocha-Neto, Class. Quantum Grav. 23, 6245 (2006)ADSzbMATHCrossRefGoogle Scholar
  25. 25.
    R. Aldrovandi, J. G. Pereira, and K. H. Vu, Braz. J. Phys. 34, 1374 (2004), gr-qc/0312008.CrossRefGoogle Scholar
  26. 26.
    R. d’Inverno, Introducing Einstein’s Relativity, 4th ed. (Clarendon Press, Oxford, 1996).Google Scholar
  27. 27.
    L. D. Landau and E. M. Lifshiz, The Classical Theory of Fields, 4th ed., Course of Theoretical Physics, Vol. 2 (Elsevier Butterworth-Heinemann, 2004).Google Scholar
  28. 28.
    M. Kobayashi, M. de Montigny, and F. C. Khanna, J. Phys. A 41, 125402 (2008), arXiv: 0710.5556.MathSciNetCrossRefGoogle Scholar
  29. 29.
    M. de Montigny, F. C. Khanna, and F. M. Saradzhev, Annals Phys. 323, 1191 (2008), arXiv: 0706.4106.ADSzbMATHCrossRefGoogle Scholar
  30. 30.
    N. C. T. Coote and A. J. Macfarlane, Gen. Rel. Grav. 9, 621 (1978).MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Faculdade GamaUniversidade de BrasíliaGama, DFBrazil
  2. 2.Physics Department, Theoretical Physics InstituteUniversity of AlbertaEdmontonCanada
  3. 3.TRIUMF 4004Westbrook mall, VancouverCanada
  4. 4.Instituto de Física and International Center for Condensed Matter PhysicsUniversidade de BrasíliaBrasilia, DFBrazil

Personalised recommendations