Advertisement

Scalar models for the generalized Chaplygin gas and the structure formation constraints

  • Júlio C. FabrisEmail author
  • Thaisa C. da C. Guio
  • Mahamadou Hamani Daouda
  • Oliver F. Piattella
Article

Abstract

The generalized Chaplygin gas model represents an attempt to unify dark matter and dark energy. It is characterized by a fluid with the equation of state p = −A/ρ α . It can be obtained from a generalization of the Dirac-Born-Infeld (DBI) action for a scalar, tachyonic field. At a background level, this model gives very good results, but it suffers from many drawbacks at the perturbative level. We show that, while for background analysis it is possible to consider any value of α, the perturbative analysis must be restricted to positive values of α. This restriction can be circumvented if the origin of the generalized Chaplygin gas is traced back to a self-interacting scalar field, instead of the DBI action. But, in doing so, the predictions coming from formation of large-scale structures reduce the generalized Chaplygin gas model to a kind of quintessence model, and the unification scenario is lost if the scalar field is the canonical one. However, if the unification condition is imposed from the beginning as a prior, the model may remain competitive. More interesting results concerning the unification program are obtained if a non-canonical self-interacting scalar field, inspired by Rastall’s theory of gravity, is invoked. In this case, an agreement with the background tests is possible.

Keywords

Dark Matter Dark Energy Probability Distribution Function Cosmic Microwave Background Wilkinson Microwave Anisotropy Probe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    E. Komatsu et al., Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation, arXiV:1001. 4538.Google Scholar
  2. 2.
    R. R. Caldwell and M. Kamionkowski, Ann. Rev. Nucl. Part. Sci. 59, 397 (2009).ADSCrossRefGoogle Scholar
  3. 3.
    G. Bertone, D. Hooper and J. Silk, Phys. Rep. 405, 279 (2005).ADSCrossRefGoogle Scholar
  4. 4.
    T. Padmanabhan, Phys. Rep. 380, 235 (2003).MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. 5.
    J. Martin, Mod. Phys. Lett. A 23, 1252 (2008).ADSCrossRefGoogle Scholar
  6. 6.
    A. Yu. Kamenshchik, U. Moschella, and V. Pasquier, Phys. Lett. B 511, 265 (2001).ADSzbMATHCrossRefGoogle Scholar
  7. 7.
    M. C. Bento, O. Bertolami, and A. A. Sen, Phys. Rev. D 66, 043507 (2002).ADSCrossRefGoogle Scholar
  8. 8.
    N. Bilic, G. B. Tupper, and R. D. Viollier, Phys. Lett. B 535, 17 (2002).ADSzbMATHCrossRefGoogle Scholar
  9. 9.
    J. C. Fabris, S. V. B. Goncalves, and P. E. de Souza, Gen. Rel. Grav. 34, 53 (2002).zbMATHCrossRefGoogle Scholar
  10. 10.
    R. Jackiw, A particle field theorist’s lectures on supersymmetric, non-Abelian fluid mechanics and D-branes, physics/0010042.Google Scholar
  11. 11.
    R. Colistete Jr., J. C. Fabris, S. V. B. Goncalves, and P. E. de Souza, Int. J. Mod. Phys. D 13, 669 (2004); R. Colistete Jr., J. C. Fabris, and S. V. B. Goncalves, Int. J. Mod. Phys. D 14, 775 (2005); R. Colistete Jr. and J. C. Fabris, Class. Quantum Grav. 22, 2813 (2005).ADSCrossRefGoogle Scholar
  12. 12.
    T. Barreiro, O. Bertolami, and P. Torres, Phys. Rev. D 78, 043530 (2008).ADSCrossRefGoogle Scholar
  13. 13.
    L. Amendola, F. Finelli, C. Burigana, and D. Carturan, JCAP 0307, 005 (2003).ADSGoogle Scholar
  14. 14.
    O. Piattella, JCAP 1003, 012 (2010).ADSGoogle Scholar
  15. 15.
    V. Gorini, A. Y. Kamenshchik, U. Moschella, O. F. Piattella, and A. A. Starobinsky, JCAP 0802, 016 (2008).ADSGoogle Scholar
  16. 16.
    J. C. Fabris, S. V. B. Gonçalves, H. E. S. Velten, and W. Zimdahl, Phys. Rev. D 78, 103523 (2008); J. C. Fabris, H. E. S. Velten, and W. Zimdahl, Phys. Rev. D 81, 087303 (2010).ADSCrossRefGoogle Scholar
  17. 17.
    C. E. M. Batista, J. C. Fabris, and M. Morita, Gen. Rel. Grav. 42, 839 (2010).ADSzbMATHCrossRefGoogle Scholar
  18. 18.
    P. Rastall, Phys. Rev. D 6, 3357 (1972).MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    C. Gao, M. Kunz, A. R. Liddle, and D. Parkinson, Phys. Rev. D 81, 043520 (2010).ADSCrossRefGoogle Scholar
  20. 20.
    V. Gorini, A. Y. Kamenshchik, U. Moschella, and V. Pasquier, Phys. Rev. D 69, 123512 (2004).MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    A. V. Frolov, L. Kofman, and A. A. Starobinsky, Phys. Lett. B 545, 8 (2002).ADSzbMATHCrossRefGoogle Scholar
  22. 22.
    V. Gorini, A. Kamenshchik, U. Moschella, V. Pasquier, and A. Starobinsky, Phys. Rev. D 72, 103518 (2005).ADSCrossRefGoogle Scholar
  23. 23.
    N. Sugiyama, Astrophys. J. Suppl. 100, 281 (1995); J. M. Bardeen, J. R. Bond, N. Kaiser, and A. S. Szalay, Astrophys. J. 304, 15 (1986).ADSCrossRefGoogle Scholar
  24. 24.
    J. C. Fabris, J. Solà, and I. L. Shapiro, JCAP 0702, 016 (2007).ADSGoogle Scholar
  25. 25.
    A. Shafieloo, V. Sahni, and A. A. Starobinsky, Phys. Rev. D 80, 101301 (2009).ADSCrossRefGoogle Scholar
  26. 26.
    L. L. Smalley, Nuovo Cim. B 80, 42 (1984).ADSCrossRefGoogle Scholar
  27. 27.
    C. E. M. Batista, J. C. Fabris, and M. Hamani Daouda, Nuovo Cim. B 125, 957 (2010)Google Scholar
  28. 28.
    A. Nicolis, R. Rattazzi, and E. Trincherini, Phys. Rev. D 79, 064036 (2009).MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    A. R. Liddle, Mon. Not. R. Astron. Soc. 377, L74 (2007).ADSCrossRefGoogle Scholar
  30. 30.
    M. Szydlowski and A. Kurek, AIC, BIC, Bayesian evidence and a notion of simplicity of cosmological model, arXiv: 0801.0638.Google Scholar
  31. 31.
    D. Bertacca and N. Bartolo, JCAP 0711, 026 (2007).ADSGoogle Scholar
  32. 32.
    B. Li and J. D. Barrow, Phys. Rev. D 79, 103521 (2009).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • Júlio C. Fabris
    • 1
    Email author
  • Thaisa C. da C. Guio
    • 1
  • Mahamadou Hamani Daouda
    • 1
  • Oliver F. Piattella
    • 1
  1. 1.Departamento de FísicaUniversidade Federal do Espírito SantoVitória, Espírito SantoBrazil

Personalised recommendations