Advertisement

Brans-Dicke theory in anisotropic models with a viscous fluid

  • Shuvendu ChakrabortyEmail author
  • Ujjal Debnath
Article

Abstract

We consider anisotropic models of the Universe in the presence of a Brans-Dicke (BD) scalar field ϕ, a causal viscous fluid and a barotropic fluid. We show that, irrespective of the fluid, the causality theory provides a late-time acceleration of the Universe. If deceleration occurs in a radial direction and acceleration in the transverse direction, then the anisotropic Universe will accelerate for a particular condition in a power-law representation of the scale factors.

Keywords

Dark Energy Anisotropic Model Average Scale Factor Anisotropic Universe Full Causal Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S. J. Perlmutter et al., Astrophys. J. 517, 565 (1999); A. G. Riess et al., Astron. J. 116, 1009 (1998); P. M. Garnavich et al., Astrophys. J. 509, 74 (1998); G. Efstathiou et al., astro-ph/9812226.ADSCrossRefGoogle Scholar
  2. 2.
    B. Ratra and P. J. E. Peebles, Phys. Rev. D 37, 3406 (1988); R. R. Caldwell, R. Dave, and P. J. Steinhardt, Phys. Rev. Lett. 80, 1582 (1998).ADSCrossRefGoogle Scholar
  3. 3.
    S. Bridle, O. Lahav, J. P. Ostriker, and P. J. Steinhardt, Science 299, 1532 (2003); C. Bennett et al., Astrophys. J. Suppl. 148, 1 (2003), astroph/0302207; D. N. Spergel et al., Astrophys. J. Suppl. 148, 175 (2003), astro-ph/0302209.ADSCrossRefGoogle Scholar
  4. 4.
    V. Sahni and A. A. Starobinsky, Int. J. Mod. Phys. 9, 373 (2003); T. Padmanabhan, Phys. Rep. 380, 235 (2003), hep-th/0212290.ADSGoogle Scholar
  5. 5.
    N. Banerjee and D. Pavon, Class. Quantum Grav. 18, 593 (2001).MathSciNetADSCrossRefzbMATHGoogle Scholar
  6. 6.
    L. P. Chimento, A. S. Jakubi, and D. Pavon, Phys. Rev. D 62, 063508 (2000).ADSCrossRefGoogle Scholar
  7. 7.
    C. Mathiazhagan and V. B.G. Johri, Class. Quantum Grav. 1, L29 (1984); D. La and P. J. Steinhardt, Phys. Rev. Lett. 62, 376 (1989).MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    N. Banerjee and D. Pavon, Phys. Rev. D 63, 043504 (2001).ADSCrossRefGoogle Scholar
  9. 9.
    B. K. Sahoo and L. P. Singh, Mod. Phys. Lett. A 18, 2725 (2003).MathSciNetADSCrossRefzbMATHGoogle Scholar
  10. 10.
    K. Nordtvedt, Jr., Astrophys. J. 161, 1059 (1970); P.G. Bergmann, Int. J. Phys. 1 25 (1968); R. V.Wagoner, Phys. Rev. D 1, 3209 (1970).MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    O. Bertolami and P. J. Martins, Phys. Rev. D 61, 064007 (2000).ADSCrossRefGoogle Scholar
  12. 12.
    R. Maartens, Class. Quantum Grav. 12, 1455 (1995).MathSciNetADSCrossRefzbMATHGoogle Scholar
  13. 13.
    W. Zimdahl, Phys. Rev. D 53, 5483 (1996).ADSCrossRefGoogle Scholar
  14. 14.
    A. H. Guth, Phys. Rev. D 23, 347 (1981).ADSCrossRefGoogle Scholar
  15. 15.
    G. F. R. Ellis and M. S. Madsen, Class. Quantum Grav. 8, 667 (1991).MathSciNetADSCrossRefzbMATHGoogle Scholar
  16. 16.
    W. A. Hiscock and L. Lindblom, Ann. Phys. (N.Y.) 151, 466 (1983).MathSciNetADSCrossRefzbMATHGoogle Scholar
  17. 17.
    L. Lindblom, Ann. Phys. (N.Y.) 247, 1 (1996).MathSciNetADSCrossRefzbMATHGoogle Scholar
  18. 18.
    N. Banerjee and A. Beesham, Aust. J. Phys. 49, 899 (1996).ADSGoogle Scholar
  19. 19.
    K. S. Thorne, Astrophys. J. 148, 51 (1967).ADSCrossRefGoogle Scholar
  20. 20.
    R. Maartens, astro-ph/9609119.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Department of MathematicsSeacom Engineering CollegeSankrail, HowrahIndia
  2. 2.Department ofMathematicsBengal Engineering and Science UniversityShibpur, HowrahIndia

Personalised recommendations