Advertisement

Cosmological dynamics in sixth-order gravity

  • M. Skugoreva
  • A. Toporensky
  • P. Tretyakov
Article

Abstract

We consider the cosmological dynamics in a generalized modified theory of gravity with an RR term added to the action of the form R + R N . The influence of the RR term on the known solutions of modified gravity is described. We show that in the particular case of N = 3 the two non-Einsteinian terms are equally important in power-law solutions. These solutions and their stability have been studied using the dynamical system approach. Some results for the case of N ≠ 3 (including stability of the de Sitter solution in the theory under investigation) have been obtained using other methods.

Keywords

Power Index Einstein Gravity Asymptotic Regime Dynamical System Approach Cosmological Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S. Perlmutter et al., Astrophys. J. 517, 565 (1999)ADSCrossRefGoogle Scholar
  2. 2.
    A. G. Riess et al., Astron. J. 116, 1009 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    A. Starobinsky, Phys. Lett. B 91, 99 (1980).ADSCrossRefGoogle Scholar
  4. 4.
    B. Whitt, Phys. Lett. B 145, 176 (1984).MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    A. Starobinsky, JETP Lett. 86, 157 (2007).ADSCrossRefGoogle Scholar
  6. 6.
    J. Barrow and S. Hervik, Phys. Rev. D 74, 124017 (2006).MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    A. Toporensky and P. Tretyakov, Int. J. Mod. Phys. D 16, 1075 (2007).MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. 8.
    J. Barrow and S. Hervik, Phys. Rev. D 81, 023513 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    Shin’ichi Nojiri, Sergei D. Odintsov, and Petr V. Tretyakov, Phys. Lett. B 651, 224 (2007).MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    Shin’ichi Nojiri, Sergei D. Odintsov, and Petr V. Tretyakov, Prog. Theor. Phys. Suppl. 172, 81 (2008).ADSzbMATHCrossRefGoogle Scholar
  11. 11.
    S. Gottlöber, H.-J. Schmidt, and A. A. Starobinsky, Class. Quantum Grav. 7, 893 (1990).ADSzbMATHCrossRefGoogle Scholar
  12. 12.
    H.-J. Schmidt, Class. Quantum Grav. 7, 1023 (1990).ADSzbMATHCrossRefGoogle Scholar
  13. 13.
    Luca Amendola, Phys. Lett. B 301, 175 (1993).MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    David Wands, Class. Quantum Grav. 11, 269 (1994).MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    S. Kluske and H.-J. Schmidt, Astron. Nachr. 317, 337 (1996).ADSzbMATHCrossRefGoogle Scholar
  16. 16.
    S. Jhingan, S. Nojiri, S. D. Odintsov, M. Sami, I. Thongkool, and S. Zerbini, Phys. Lett. B 663, 424 (2008).ADSCrossRefGoogle Scholar
  17. 17.
    Ahmed Hindawi, Burt A. Ovrut, and Daniel Waldram, Phys. Rev. D 53, 5597 (1996).MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    L. Amendola, R. Gannouji, D. Polarski, and S. Tsujikawa, Phys. Rev. D 75, 083504 (2007).ADSCrossRefGoogle Scholar
  19. 19.
    S. Carloni, K. S. Dunsby, S. Capozziello, and A. Troisi, Class. Quantum Grav. 22, 4839 (2005).MathSciNetADSzbMATHCrossRefGoogle Scholar
  20. 20.
    S. Carloni, A. Troisi, and P. K. S. Dunsby, Gen. Rel. Grav. 41, 1757 (2009).MathSciNetADSzbMATHCrossRefGoogle Scholar
  21. 21.
    T. Ruzmaikina and A. Ruzmaikin, Sov. Phys. JETP 30, 372 (1970).ADSGoogle Scholar
  22. 22.
    F. R. Gantmacher, Applications of the Theory of Matrices (New York: Wiley, 1959), p. 230; http://mathworld.wolfram.com/Routh-HurwitzTheorem.html zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • M. Skugoreva
    • 1
  • A. Toporensky
    • 1
  • P. Tretyakov
    • 2
  1. 1.People’s Friendship University of RussiaMoscowRussia
  2. 2.Joint Institute for Nuclear ResearchDubna, Moscow RegionRussia

Personalised recommendations