Advertisement

Gravitation and Cosmology

, Volume 17, Issue 2, pp 176–180 | Cite as

Black universes with trapped ghosts

  • K. A. BronnikovEmail author
  • E. V. Donskoy
Article

Abstract

A black universe is a nonsingular black hole where, beyond the horizon, there is an expanding, asymptotically isotropic universe. Such models have been previously found as solutions of general relativity with a phantomscalar field as a source of gravity and, without phantoms, in a brane world of RS2 type. Here we construct examples of static, spherically symmetric black-universe solutions in general relativity with a minimally coupled scalar field ϕ whose kinetic energy is negative in a restricted strong-field region of spacetime and positive outside it. Thus in such configurations a “ghost” is trapped in a small part of space, which may in principle explain why no ghosts are observed under usual conditions.

Keywords

Black Hole Ghost Event Horizon Null Energy Condition Regular Black Hole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Dymnikova, Gen. Rel. Grav. 24, 235 (1992).MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    I. Dymnikova and E. Galaktionov, Phys. Lett. B. 645, 358 (2007).MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    P. Dzierzak, J. Jezierski, P. Malkiewicz, and W. Piechocki, arXiv: 0810.3172.Google Scholar
  4. 4.
    D.J. Mulryse, R. Tavakol, J. E. Lidsey, and G. F. R. Ellis, Phys. Rev. D 71, 123512 (2005); S. Mukherejee, B. C. Paul, S. D. Maharaj, and A. Beesham, gr-qc/0505103.ADSCrossRefGoogle Scholar
  5. 5.
    K. A. Bronnikov and J. C. Fabris, Phys. Rev. Lett. 96, 251101 (2006).MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    K. A. Bronnikov, V. N. Melnikov, and H. Dehnen, Gen. Rel. Grav. 39, 973 (2007).MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. 7.
    K. A. Bronnikov and E. V. Donskoy, Grav. Cosmol. 16, 42 (2010).CrossRefzbMATHGoogle Scholar
  8. 8.
    L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999); hep-ph/9906064.MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. 9.
    T. Shiromizu, K. Maeda, and M. Sasaki, Phys. Rev. D. 62, 024012 (2000).MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    K. A. Bronnikov and S.-W. Kim, Phys. Rev. D. 67, 064027 (2003); gr-qc/0212112.MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    K. A. Bronnikov and S. V. Sushkov, Class. Quantum Grav. 27, 095022 (2010).MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    H. Kroger, G. Melkonian, and S. G. Rubin, Gen. Rel. Grav. 36, 1649 (2004); astro-ph/0310182.ADSCrossRefGoogle Scholar
  13. 13.
    M. S. Morris and K. S. Thorne, Am. J. Phys. 56, 395 (1988).MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    K. A. Bronnikov and S. G. Rubin, Lectures on Gravitation and Cosmology (MIFI press, Moscow, 2008, in Russian).Google Scholar
  15. 15.
    K. A. Bronnikov, Phys. Rev. D. 64, 064013 (2001); gr-qc/0104092; K. A. Bronnikov, J. Math. Phys. 43, 6096 (2002); gr-qc/0204001; K. A. Bronnikov and G. N. Shikin, Grav. Cosmol. 8, 107 (2002).MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Center of Gravitation and Fundamental MetrologyVNIIMSMoscowRussia
  2. 2.Institute of Gravitation and CosmologyPFURMoscowRussia

Personalised recommendations