Gravitation and Cosmology

, Volume 17, Issue 2, pp 161–165 | Cite as

Vector theory of gravity

  • V. N. BorodikhinEmail author


We proposed a gravitation theory based on an analogy with electrodynamics on the basis of a vector field. For the first time, to calculate the basic gravitational effects in the framework of a vector theory of gravity, we use a Lagrangian written with gravitational radiation neglected and generalized to the case of ultra-relativistic speeds. This allows us to accurately calculate the values of all three major gravity experiments: the values of the perihelion shift of Mercury, the light deflection angle in the gravity field of the Sun and the value of radar echo delay. The calculated values coincide with the observed ones. It is shown that, in this theory, there exists a model of an expanding Universe.


Vector Theory Gravitational Radiation Spherical Region Cosmological Redshift Perihelion Precession 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. L. Whitrow and G. E. Morduch, In Vistas in Astronomy (Pergamon Press, Oxford, 1965), Vol. 6.Google Scholar
  2. 2.
    C.W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, San Francisco, 1973).Google Scholar
  3. 3.
    U. M. Zinovyev, Teor. Mat. Fiz. 131,2, 332 (2002)Google Scholar
  4. 4.
    H. Essen, Eur. Phys. Lett. 79, 60002 (2007); physics/0701324.MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    C. M. Will, Theory and Experiment in Gravitational Physics (Univ. Press, Cambridge, 1993).zbMATHCrossRefGoogle Scholar
  6. 6.
    D. R. Brill and D. Goel, Am. J. Phys. 67, 316 (1999); gr-qc/9712082.ADSCrossRefGoogle Scholar
  7. 7.
    V. Hnizdo, Eur. J. Phys. 25, 351 (2004).MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    L. D. Landau and E.M. Lifshitz, Field Theory (Nauka, Moscow, 1988).zbMATHGoogle Scholar
  9. 9.
    Ya. B. Zel’dovich and I. D. Novikov, Structure and Evolution of the Universe (Nauka, Moscow, 1975).Google Scholar
  10. 10.
    E. A. Milne and W. H. McCrea, Q. J. Math. (Oxford) 5, 73 (1934).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Omsk State UniversityOmskRussia

Personalised recommendations