Advertisement

Gravitation and Cosmology

, Volume 17, Issue 1, pp 38–41 | Cite as

Vacuum solitons with a de Sitter center as dark matter candidates

  • I. Dymnikova
  • E. Galaktionov
  • A. Poszwa
Article

Abstract

We outline the properties and possible observational signatures of gravitational vacuum solitons (G-lumps) which are spherically symmetric, globally neutral, gravitationally bound compact vacuum objects without horizons, asymptotically de Sitter at the center. Their existence is implied by the Einstein equations. Their masses are restricted by m < m crit, where m crit = αmp1 √ϱ0/ϱp1 with a coefficient α depending on the model. G-lumps can be considered as dark matter candidates which are generically related to vacuum dark energy through the de Sitter vacuum trapped inside.

Keywords

Black Hole Dark Matter Dark Energy Circular Orbit Dark Matter Candidate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Dymnikova, Class. Quantum Grav. 19, 725 (2002).MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. 2.
    I. Dymnikova and E. Galaktionov, Phys. Lett. B 645, 358 (2007).MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    I. Dymnikova, Gen. Rel. Grav. 24, 235 (1992).MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    I. Dymnikova, Phys. Lett. B 472, 33 (2000).MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. 5.
    P. O. Mazur and E. Mottola, gr-qc/0109035.Google Scholar
  6. 6.
    I. Dymnikova, Int. J. Mod. Phys. D 5, 529 (1996).MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    C. G. Böhmer and T. Harko, Phys. Lett. B 630, 73 (2006); gr-qc/0602081.Google Scholar
  8. 8.
    A. Arbey, Phys. Rev. D 72, 043516 (2000); astroph/0601274.Google Scholar
  9. 9.
    B. J. Carr, Lect. Notes Phys. 631, 301 (2003); astroph/0310838; M. Yu. Khlopov and S. G. Rubin, Cosmological Pattern of Microphysics in Inflationary Universe (Kluwer, Dordrecht, 2004).MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    I. Dymnikova, in “Invisible Universe International Conference,” AIP 1241 Conference Proceedings (2010), p. 341.Google Scholar
  11. 11.
    I. Dymnikova and B. Soltysek, Gen. Rel. Grav. 30, 1775 (1998).MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. 12.
    K. A. Bronnikov, A. Dobosz, and I. Dymnikova, Class. Quantum Grav. 20, 3797 (2003).MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. 13.
    I. Dymnikova and M. Korpusik, Phys. Lett. B 685, 12 (2010).ADSCrossRefGoogle Scholar
  14. 14.
    E. Poisson and W. Israel, Class. Quantum Grav. 5, L201 (1988).MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    S. Coleman, in New Phenomena in Subnuclear Physics (Ed. A. Zichichi, Plenum, 1977).Google Scholar
  16. 16.
    A. Einstein, Sci. Amer. 182, 13 (1952).CrossRefGoogle Scholar
  17. 17.
    I. Dymnikova and E. Galaktionov, Class. Quant. Grav. 22, 2331 (2005).MathSciNetADSzbMATHCrossRefGoogle Scholar
  18. 18.
    I. Dymnikova, A. Poszwa, and B. Sołtysek, Grav. Cosmol. 14, 262 (2008).ADSzbMATHCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • I. Dymnikova
    • 1
    • 2
  • E. Galaktionov
    • 2
  • A. Poszwa
    • 1
  1. 1.Department of Mathematics and Computer SciencesUniversity of Warmia and MazuryOlsztynPoland
  2. 2.Ioffe Physico-Technical InstituteSt. PetersburgRussia

Personalised recommendations