Gravitation and Cosmology

, Volume 16, Issue 4, pp 307–312 | Cite as

A study of the motion of a relativistic continuous medium

  • S. A. Podosenov
  • J. Foukzon
  • A. A. Potapov


The main purpose of the present paper is to give an exact and correct expression describing the properties of the proper length in arbitrary relativistic translationally moving media in Minkowski space. We show, in particular, that the standard solution of Bell’s well-known problem [1] must be revised. A new solution has been found, describing the behavior of a finite physical length in the Lagrangian non-inertial reference frame comoving to the medium. This solution is absent in the existing literature. We conclude that, in the case of large enough accelerations a 0 and initial distances between some points of the medium, i.e., under the condition ua 0 L 0/c 2 ≫ 1, where c is the speed of light, the calculations presented in some well-known papers (namely, [1, 2, 10–12]) are incorrect and should be revised. For the velocity values u ≪ 1, our results and those of all the enumerated papers coincide.


Minkowski Space World Line Linear Collider Electronic Bunch Strain Rate Tensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. S. Bell, Speakable and Unspeakable in Quantum Mechanics (Cambridge University Press, 1993), p. 67.Google Scholar
  2. 2.
    S. S. Gershtein and A. A. Logunov, J. Bell’s Problem. Particle and Nuclear Physics 29, 5th issue (1998).Google Scholar
  3. 3.
    L. D. Landau and E.M. Lifshitz, Field Theory (Nauka, Moscow, 1973).Google Scholar
  4. 4.
    P. K. Rashevsky, Riemannian Geometry and Tensor Analysis (GITTL, Moscow, 1953).Google Scholar
  5. 5.
    S. A. Podosenov, Tetrad Formulation of Motion of an Elastic Medium in Special Relativity, Izv. Vuzov, Fiz. ю4, 45 (1970).Google Scholar
  6. 6.
    S. A. Podosenov, Relativistic Kinematics of a Deformable Medium in Special Relativity. In: Problemy Terii Gravitatsii. Teor. i Mat. Fiz., 1st issue (VNIIOFI, Moscow, 1972), p. 60–72.Google Scholar
  7. 7.
    S. A. Podosenov, Space, Time and Classical Fields of Bound Structures (Sputnik publishers, Moscow, 2000).Google Scholar
  8. 8.
    S. A. Podosenov, A. A. Potapov, and A. A. Sokolov, Impulse Electrodynamics of Wide-Band Radio Systems and the Fields of Bound Structures (Radiotekhnika, Moscow, 2003).Google Scholar
  9. 9.
    A. A. Logunov, Lectures on Relativity and Gravitation. Modern Analysis of the Problem (Nauka, Moscow, 1987).Google Scholar
  10. 10.
    D. V. Redzic, Note on Devan-Beran-Bell’s spaceship problem, Eur. J. Phys. 29, 11 (2008).CrossRefGoogle Scholar
  11. 11.
    D. V. Peregudov, Comments to the paper by Redzic [10] Eur. J. Phys. 29 (2008).Google Scholar
  12. 12.
    V. L. Ginzburg and Yu. N. Eroshenko, Once Again on the Equivalence Principle, Uspekhi Fiz. Nauk 165, 2 (1995).CrossRefGoogle Scholar
  13. 13.
    A. L. Zel’manov, in: Proc. of the 6th Meeting on Cosmogony (AN SSSR publishers, Moscow, 1959).Google Scholar
  14. 14.
    J. Foukzon, S. A. Podosenov, and A. A. Potapov, Relativistic length expansion in general accelerated system revisited, ArXiv: 0910.2298.Google Scholar
  15. 15.
    S. A. Podosenov, J. Foukzon, and A. A. Potapov, Bell’s Problem and a Study of Electronic Bunches in Linear Colliders, NelineinyiMir 7(8), 612 (2009).Google Scholar
  16. 16.
    J. L. Synge, Relativity: the General Theory (NHPC, Amsterdam, 1960).zbMATHGoogle Scholar
  17. 17.
    S. A. Podosenov, Relativistic Mechanics of a Deformable Medium in Tetrad Formulation, PhD thesis (Peoples’ Friendship University, Moscow, 1972).Google Scholar
  18. 18.
    H. Dehnen, in: Einstein Proceedings 1969–1970 (Nauka, Moscow, 1970), p. 140.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • S. A. Podosenov
    • 1
  • J. Foukzon
    • 2
  • A. A. Potapov
    • 3
  1. 1.Aprelevka, Naro-Fominsky rayonMoscow regionRussia
  2. 2.Israeli Institute of TechnologiesHaifaIsrael
  3. 3.V.A. Kotel’nikov Institute of Radioelectronics of the Russian Academy of SciencesMoscowRussia

Personalised recommendations