Advertisement

Gravitation and Cosmology

, Volume 16, Issue 4, pp 288–297 | Cite as

Logarithmic nonlinearity in theories of quantum gravity: Origin of time and observational consequences

  • K. G. Zloshchastiev
Article

Abstract

Starting from a generic generally covariant quantum theory, we introduce a logarithmic correction to the quantum wave equation. We demonstrate the emergence of evolution time from the group of automorphisms of the von Neumann algebra governed by this nonlinear correction. It turns out that such a parametrization of time is essentially energy-dependent and becomes global only asymptotically, as the energies become very small as compared to the effective quantum gravity scale. A similar thing happens to Lorentz invariance: in the resulting theory it becomes an asymptotic low-energy phenomenon. We show how the logarithmic nonlinearity deforms the vacuum wave dispersion relations and explains certain features of the astrophysical data coming from the recent observations of high-energy cosmic rays. In general, the estimates imply that, ceteris paribus, particles with higher energy propagate slower than those with lower energy, therefore, for a high-energy particle the mean free path, lifetime in a high-energy state and thus the travel distance from the source can be significantly larger than one would expect from the conventional theory. In addition, we discuss the possibility and conditions of transluminal phenomena in the physical vacuum such as Cherenkov-type shock waves.

Keywords

Dispersion Relation Quantum Gravity Modular Group Covariant Theory Nonlinear Correction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Weinberg, Annals Phys. 194, 336 (1989).CrossRefMathSciNetADSGoogle Scholar
  2. 2.
    N. Gisin, Helv. Phys. Acta 62, 363 (1989); Phys. Lett. A 143, 1 (1990).MathSciNetGoogle Scholar
  3. 3.
    J. Polchinski, Phys. Rev. Lett. 66, 397 (1991).zbMATHCrossRefMathSciNetADSGoogle Scholar
  4. 4.
    M. Czachor, Phys. Rev. A 57, 4122 (1998); Phys. Lett. A 225, 1 (1997); M. Czachor and H.-D. Doebner, Phys. Lett. A 301, 139 (2002).CrossRefMathSciNetADSGoogle Scholar
  5. 5.
    H. D. Doebner and G. A. Goldin, Phys. Rev. A 54, 3764 (1996).CrossRefMathSciNetADSGoogle Scholar
  6. 6.
    A. Ashtekar and T. A. Schilling, arXiv: grqc/9706069.Google Scholar
  7. 7.
    P. M. Pearle, Phys. Rev.D13, 857 (1976); A.N.Grigorenko, J. Phys. A: Math. Gen. 28, 1459 (1995); T. P. Singh, J. Phys. Conf. Ser. 174, 012024 (2009).CrossRefMathSciNetADSGoogle Scholar
  8. 8.
    I. Bialynicki-Birula and J. Mycielski, Annals Phys. 100, 62 (1976).CrossRefMathSciNetADSGoogle Scholar
  9. 9.
    C. J. Murphy, C*-Algebras and operator theory (Academic Press, Boston, 1990).Google Scholar
  10. 10.
    M. Kastner and I. Snyman, private communications.Google Scholar
  11. 11.
    E. T. Jaynes, Phys. Rev. 108, 171 (1957) [Sec. 8].CrossRefMathSciNetADSGoogle Scholar
  12. 12.
    A. Wehrl, Rep.Math. Phys. 16, 353 (1979).zbMATHCrossRefMathSciNetADSGoogle Scholar
  13. 13.
    A. Connes and C. Rovelli, Class. Quant. Grav. 11, 2899 (1994).zbMATHCrossRefMathSciNetADSGoogle Scholar
  14. 14.
    C. Rovelli, Class. Quant. Grav. 10, 1549 (1993).zbMATHCrossRefMathSciNetADSGoogle Scholar
  15. 15.
    M. Heller and W. Sasin, Phys. Lett. A 250, 48 (1998).zbMATHCrossRefMathSciNetADSGoogle Scholar
  16. 16.
    J. R. Ellis, N. E. Mavromatos and D. V. Nanopoulos, Phys. Lett. B 293, 37 (1992).CrossRefMathSciNetADSGoogle Scholar
  17. 17.
    L. J. Garay, Phys. Rev. Lett. 80, 2508 (1998).zbMATHCrossRefMathSciNetADSGoogle Scholar
  18. 18.
    G. Amelino-Camelia et al., Nature 393, 763 (1998); J. R. Ellis et al., Astrophys. J. 535, 139 (2000).CrossRefADSGoogle Scholar
  19. 19.
    J. I. Latorre, P. Pascual and R. Tarrach, Nucl. Phys. B 437, 60 (1995).CrossRefADSGoogle Scholar
  20. 20.
    G. S. Asanov, Finsler Geometry, Relativity And Gauge Theories (Dordrecht, Netherlands: Reidel, 1985), 370 p.; F. Girelli, S. Liberati and L. Sindoni, Phys. Rev. D 75, 064015 (2007).zbMATHGoogle Scholar
  21. 21.
    N. D. Birrell and P. C. W. Davies, Quantum Fields In Curved Space (Cambridge, UK: Univ. Pr., 1982), 340 p.zbMATHGoogle Scholar
  22. 22.
    A. A. Abdo et al. [Fermi LAT/GBM Collaborations], Science 323, 1688 (2009).CrossRefADSGoogle Scholar
  23. 23.
    T. Kifune, Astrophys. J. 518, L21 (1999).CrossRefADSGoogle Scholar
  24. 24.
    R. J. Protheroe and H. Meyer, Phys. Lett. B 493, 1 (2000); J. Albert et al. [MAGIC Collaboration and Other Contributors Collaboration], Phys. Lett. B 668, 253 (2008).CrossRefADSGoogle Scholar
  25. 25.
    J. Lukierski et al., Phys. Lett. B 264, 331 (1991); Phys. Lett. B 293, 344 (1992); Annals Phys. 243, 90 (1995).CrossRefMathSciNetADSGoogle Scholar
  26. 26.
    G. Amelino-Camelia, Phys. Lett. B 392, 283 (1997).CrossRefMathSciNetADSGoogle Scholar
  27. 27.
    E. Tkalya, private communication.Google Scholar
  28. 29.
    B. M. Bolotovskii and V. L. Ginzburg, Usp. Fiz. Nauk 106, 577 (1972).Google Scholar
  29. 30.
    E. F. Beall, Phys. Rev. D 1, 961 (1970).CrossRefADSGoogle Scholar
  30. 31.
    S. R. Coleman and S. L. Glashow, Phys. Lett. B 405, 249 (1997).CrossRefADSGoogle Scholar
  31. 32.
    T. Jacobson, S. Liberati and D. Mattingly, Phys. Rev. D 67, 124011 (2003).CrossRefADSGoogle Scholar
  32. 33.
    R. Lehnert and R. Potting, Phys. Rev. Lett. 93, 110402 (2004); Phys. Rev. D 70, 125010 (2004) [Erratum-ibid. D 70, 129906 (2004)].CrossRefADSGoogle Scholar
  33. 34.
    P. Castorina, A. Iorio and D. Zappala, Europhys. Lett. 69, 912 (2005).CrossRefADSGoogle Scholar
  34. 35.
    C. Kaufhold and F. R. Klinkhamer, Nucl. Phys. B 734, 1 (2006); Phys. Rev. D 76, 025024 (2007).zbMATHCrossRefADSGoogle Scholar
  35. 36.
    B. Altschul, Phys.Rev. Lett. 98, 041603 (2007); Phys. Rev. D 75, 105003 (2007); Nucl. Phys. B 796, 262 (2008).CrossRefADSGoogle Scholar
  36. 37.
    R. Mignani and E. Recami, Lett. Nuovo Cim. 7, 388 (1973).CrossRefGoogle Scholar
  37. 38.
    M. Thulasidas, Int. J. Mod. Phys.D 16, 983 (2007).zbMATHCrossRefADSGoogle Scholar
  38. 39.
    G. Amelino-Camelia, Phys. Lett. B 528, 181 (2002).CrossRefADSGoogle Scholar
  39. 40.
    J. Chang et al., Nature 456, 362 (2008).CrossRefADSGoogle Scholar
  40. 41.
    F. W. Stecker and S. L. Glashow, Astropart. Phys. 16, 97 (2001); F. W. Stecker and S. T. Scully, New J. Phys. 11, 085003 (2009).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • K. G. Zloshchastiev
    • 1
  1. 1.National Institute for Theoretical Physics (NITheP), Department of Physics and Centre for Theoretical PhysicsUniversity of WitwatersrandJohannesburgSouth Africa

Personalised recommendations