Gravitation and Cosmology

, Volume 16, Issue 4, pp 274–282 | Cite as

New features of a flat (4 + 1)-dimensional cosmological model with a perfect fluid in gauss-bonnet gravity

  • I. V. Kirnos
  • S. A. Pavluchenko
  • A. V. Toporensky


We study a flat multidimensional cosmological model in Gauss-Bonnet gravity in the presence of matter in the form of a perfect fluid. We find analytically new stationary regimes (these results are valid for an arbitrary number of spatial dimensions) and study their stability by means of numerical recipes in the (4 + 1)-dimensional case. In the vicinity of the stationary regime, we find numerically another nonsingular regime which appears to be periodical. Finally, we demonstrate that the presence of matter in the form of a perfect fluid lifts some constraints on the dynamics of the (4 + 1)-dimensional model which have been found earlier.


Bonnet Hubble Parameter Lovelock Gravity Bonnet Gravity Bonnet Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Müller-Hoissen, Phys. Lett. 163B, 106 (1985).ADSGoogle Scholar
  2. 2.
    J. Madore, Phys. Lett. 111A, 283 (1985); J. Madore, Class. Quantum Grav. 3, 361 (1986); F. Müller-Hoissen, Class. Quantum Grav. 3, 665 (1986).MathSciNetADSGoogle Scholar
  3. 3.
    N. Deruelle, Nucl. Phys. B 327, 253 (1989).CrossRefMathSciNetADSGoogle Scholar
  4. 4.
    T. Verwimp, Class. Quantum Grav. 6, 1655 (1989); G. A. Mena Marugän, Phys. Rev. D 42, 2607 (1990); ibid. 46, 4340 (1992).zbMATHCrossRefMathSciNetADSGoogle Scholar
  5. 5.
    N. Deruelle and L. Fariña-Busto, Phys. Rev. D 41,3696 (1990).CrossRefMathSciNetADSGoogle Scholar
  6. 6.
    D. Lovelock, J. Math. Phys. 12, 498 (1971).zbMATHCrossRefMathSciNetADSGoogle Scholar
  7. 7.
    R. Metsaev and A. Tseytlin, Nucl. Phys. B 293, 385 (1987).CrossRefMathSciNetADSGoogle Scholar
  8. 8.
    K. Bamba, S. Odintsov, L. Sebastiani, and S. Zerbini, arXiv: 0911.4390.Google Scholar
  9. 9.
    S. Nojiri and S. D. Odintsov, JHEP 0007 049 (2000); hep-th/0006232.CrossRefMathSciNetADSGoogle Scholar
  10. 10.
    S. Nojiri, S. D. Odintsov, and S. Ogushi, Int. J. Mod. Phys. A 17 4809 (2002); hep-th/0205187zbMATHCrossRefMathSciNetADSGoogle Scholar
  11. 11.
    G. Kofinas, R. Maartens, and E. Papantonopoulos, JHEP 0310 066 (2003); hep-th/0307138CrossRefMathSciNetADSGoogle Scholar
  12. 12.
    I. V. Kirnos and A. N. Makarenko, arXiv: 0903.0083.Google Scholar
  13. 13.
    V. D. Ivashchuk, arXiv: 0910.3426.Google Scholar
  14. 14.
    S. A. Pavluchenko and A. V. Toporensky, Mod. Phys. Lett. A 24, 513 (2009); arXiv: 0811.0558CrossRefADSGoogle Scholar
  15. 15.
    I. V. Kirnos, A. N. Makarenko, S. A. Pavluchenko, and A. V. Toporensky, arXiv: 0906.0140.Google Scholar
  16. 16.
    S. A. Pavluchenko, Phys. Rev. D 80, 107501 (2009); arXiv:0906.0141.CrossRefADSGoogle Scholar
  17. 17.
    R. Chingangbam, M. Sami, P. V. Tretyakov, and A. V. Toporensky, Phys. Lett. B 661, 162 (2008); arXiv: 0711.2122CrossRefMathSciNetADSGoogle Scholar
  18. 18.
    S. A. Pavluchenko, arXiv: 1003.4892.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • I. V. Kirnos
    • 1
  • S. A. Pavluchenko
    • 2
  • A. V. Toporensky
    • 3
  1. 1.Tomsk State University of Control Systems and RadioelectronicsTomskRussia
  2. 2.Special Astrophysical ObservatoryRussian Academy of SciencesNizhnij ArkhyzRussia
  3. 3.Sternberg Astronomical InstituteMoscow State UniversityMoscowRussia

Personalised recommendations