Advertisement

Gravitation and Cosmology

, Volume 16, Issue 3, pp 223–227 | Cite as

A new variable modified Chaplygin gas model interacting with a scalar field

  • W. ChakrabortyEmail author
  • U. Debnath
Article

Abstract

We present a new form of the well-known Chaplygin gas model by introducing inhomogeneity in the equation of state. This model explains ω = −1 crossing. We also give a graphic representation of the model using the {r, s} parameters. We considered an interaction of this model with a scalar field by introducing a phenomenological coupling function and show that the potential decays with time.

Keywords

Dark Matter Dark Energy Hubble Parameter Deceleration Parameter Dark Energy Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. A. Bachall, J. P. Ostriker, S. Perlmutter, and P. J. Steinhardt, Science 284, 1481 (1999).CrossRefADSGoogle Scholar
  2. 2.
    S. J. Perlmutter et al., Astrophys. J. 517, 565 (1999).CrossRefADSGoogle Scholar
  3. 3.
    V. Sahni and A. A. Starobinsky, Int. J. Mod. Phys. A 9, 373 (2000).ADSGoogle Scholar
  4. 4.
    P. J. E. Peebles and B. Ratra, Rev. Mod. Phys. 75, 559 (2003).CrossRefMathSciNetADSGoogle Scholar
  5. 5.
    T. Padmanabhan, Phys. Rep. 380, 235 (2003).zbMATHCrossRefMathSciNetADSGoogle Scholar
  6. 6.
    E. J. Copeland, M. Sami, and S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006).zbMATHCrossRefMathSciNetADSGoogle Scholar
  7. 7.
    S. Das and N. Banerjee, Gen. Rel. Grav. 38 785 (2006).zbMATHCrossRefMathSciNetADSGoogle Scholar
  8. 8.
    A. Kamenshchik, U. Moschella, and V. Pasquier, Phys. Lett. B 511, 265 (2001); V. Gorini, A. Kamenshchik, U. Moschella, and V. Pasquier, grqc/0403062.zbMATHCrossRefADSGoogle Scholar
  9. 9.
    V. Gorini, A. Kamenshchik, and U. Moschella, Phys. Rev. D 67, 063509 (2003); U. Alam, V. Sahni, T. D. Saini, and A. A. Starobinsky, Mon. Not. Roy. Astron. Soc. 344, 1057 (2003).CrossRefADSGoogle Scholar
  10. 10.
    M. C. Bento, O. Bertolami, and A. A. Sen, Phys. Rev. D 66, 043507 (2002).CrossRefADSGoogle Scholar
  11. 11.
    H. B. Benaoum, hep-th/0205140.Google Scholar
  12. 12.
    U. Debnath, A. Banerjee, and S. Chakraborty, Class. Quantum Grav. 21, 5609 (2004).zbMATHCrossRefMathSciNetADSGoogle Scholar
  13. 13.
    Z. K. Guo and Y. Zhang, Phys. Lett. B 645, 326 (2007), astro-ph/0506091.CrossRefADSGoogle Scholar
  14. 14.
    G. Sethi, S. K. Singh, P. Kumar, D. Jain, and A. Dev, Int. J. Mod. Phys. D 15, 1089 (2006); Z. K. Guo and Y. Z. Zhang, astro-ph/0509790.zbMATHCrossRefADSGoogle Scholar
  15. 15.
    M. C. Bento, O. Bertolami, and A. A. Sen, Phys. Lett. B 575, 172 (2003).CrossRefADSGoogle Scholar
  16. 16.
    M. S. Berger and H. Shojaei, Phys. Rev. D 74, 043530 (2006).CrossRefADSGoogle Scholar
  17. 17.
    R.-G. Cai and A. Wang, JCAP 03, 002 (2005).ADSGoogle Scholar
  18. 18.
    W. Zimdahl, Int. J. Mod. Phys. D 14, 2319 (2005).zbMATHCrossRefADSGoogle Scholar
  19. 19.
    B. Hu and Y. Ling, Phys.Rev. D 73, 123510 (2006).CrossRefMathSciNetADSGoogle Scholar
  20. 20.
    I. Brevik, O.G. Gorbunova, and A.V. Timoshkin, Eur. Phys. J. C 51, 179 (2007).CrossRefADSGoogle Scholar
  21. 21.
    V. Sahni, T. D. Saini, A. A. Starobinsky, and U. Alam, JETP Lett. 77, 201 (2003).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Department of MathematicsNew Alipore CollegeNew Alipore, KolkataIndia
  2. 2.Department of MathematicsBengal Engineering and Science UniversityShibpur, HowrahIndia

Personalised recommendations