Gravitation and Cosmology

, Volume 16, Issue 2, pp 173–177 | Cite as

Fermion fields in Einstein-Cartan theory and the accelerated-decelerated transition in a primordial universe

  • M. O. Ribas
  • G. M. Kremer


The accelerated-decelerated transition in a primordial Universe is investigated by using the dynamics of fermion fields within the context of the Einstein-Cartan theory, where, apart from the curvature, the space-time is also described by a torsion field. The model analyzed here has only a fermion field as a source of the gravitational field. The term associated with the spin of the fermion field plays the role of an inflaton which contributes to an accelerated regime whereas the one related to the fermion mass behaves as a matter field and is responsible for a decelerated regime. Hence, by taking into account the spin of a massive fermion field, it is possible to characterize the transition from an accelerated to a decelerated period of the primordial Universe.


Spin Density Dirac Equation Fermion Mass Accelerate Expansion Spin Connection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. J. E. Peebles, Principles of Physical Cosmology (Princeton Series in Physics, Princeton, 1993).Google Scholar
  2. 2.
    A. D. Linde, Particle Physics as Inflationary Cosmology (Harwood Academic Publisher, Chur, 1990).Google Scholar
  3. 3.
    A. H. Guth, Phys. Rev. D 23, 347 (1981).CrossRefADSGoogle Scholar
  4. 4.
    A. Albrecht and P. J. Steinhardt, Phys. Rev. Lett. 48, 1220 (1982).CrossRefADSGoogle Scholar
  5. 5.
    A. D. Linde, Phys. Lett. B. 108, 389 (1982).CrossRefMathSciNetADSGoogle Scholar
  6. 6.
    M. O. Ribas, F. P. Devecchi, and G. M. Kremer, Phys. Rev. D 72, 123502 (2005).CrossRefADSGoogle Scholar
  7. 7.
    M. O. Ribas, F. P. Devecchi, and G. M. Kremer, EPL 81, 19001 (2008).CrossRefMathSciNetADSGoogle Scholar
  8. 8.
    B. Saha, Phys. Rev. D 74, 124030 (2006).CrossRefMathSciNetADSGoogle Scholar
  9. 9.
    L. P. Chimento, F. P. Devecchi, M. Forte, and G. M. Kremer, Class. Quantum Grav. 25, 085007 (2008).CrossRefMathSciNetADSGoogle Scholar
  10. 10.
    R. C. de Souza and G. M. Kremer, Class. Quantum Grav. 25, 225006 (2008).CrossRefADSGoogle Scholar
  11. 11.
    M. Gasperini, Phys. Rev. Lett. 56, 2873 (1986).CrossRefADSGoogle Scholar
  12. 12.
    M. Gasperini, Gen. Rel. Grav. 30, 1703 (1998).zbMATHCrossRefMathSciNetADSGoogle Scholar
  13. 13.
    C. G. Böhmer, Acta Phys. Polon. B 36, 2841 (2005).MathSciNetGoogle Scholar
  14. 14.
    L. C. Garcia de Andrade, Int. J. Mod. Phys. D 8, 725 (1999).CrossRefADSGoogle Scholar
  15. 15.
    C. G. Böhmer, Class. Quant. Grav. 21, 1119 (2004).zbMATHCrossRefADSGoogle Scholar
  16. 16.
    W. Kopczynski, Phys. Lett. A 39, 219 (1972).CrossRefMathSciNetADSGoogle Scholar
  17. 17.
    W. Kopczynski, Phys. Lett. A 43, 63 (1973).CrossRefADSGoogle Scholar
  18. 18.
    S. Capozziello, R. Cianci, C. Stornaiolo, and S. Vignolo, Phys. Scripta 78, 065010 (2008).CrossRefADSGoogle Scholar
  19. 19.
    S. Capozziello, Mod. Phys. Lett. A 17, 1621 (2002).CrossRefMathSciNetADSGoogle Scholar
  20. 20.
    A. V. Minkevich, A. S. Garkun, and V. I. Kudin, Comment on “Torsion Cosmology and Accelerating Universe”, gr-qc/08111430.Google Scholar
  21. 21.
    C. G. Böhmer and J. Burnett, Phys. Rev. D 78, 104001 (2008).CrossRefADSGoogle Scholar
  22. 22.
    F. W. Hehl, P. V. Heyde, and G. D. Kerlick, Phys. Rev. D 10, 1066 (1974).CrossRefMathSciNetADSGoogle Scholar
  23. 23.
    F. W. Hehl, P. V. Heyde, and G. D. Kerlick, Rev. Mod. Phys. 48, 393 (1976).CrossRefADSGoogle Scholar
  24. 24.
    F. W. Hehl and P. V. Heyde, Ann. Inst. Henri Poincaré 19, 179 (1973).Google Scholar
  25. 25.
    W. Arkuszewski, W. Kopczynskiand, and V. N. Ponomariev, Ann. Inst. Henri Poincaré 21, 89 (1974).Google Scholar
  26. 26.
    T. Watanabe and M. Hayashi, General Relativity with Torsion, gr-qc/0409029.Google Scholar
  27. 27.
    H. I. Arcos and J. G. Pereira, Int. J. Mod. Phys. D 13, 807 (2004).CrossRefMathSciNetADSGoogle Scholar
  28. 28.
    K. F. Shie, J. M. Nester, and H. J. Yo, Phys. Rev. D 78, 023522 (2008).CrossRefADSGoogle Scholar
  29. 29.
    T. Watanabe, Dirac-field model of inflation in Einstein-Cartan theory, astro-ph/0902.1392.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • M. O. Ribas
    • 1
  • G. M. Kremer
    • 2
  1. 1.Faculdades Integradas EspíritaCuritibaBrazil
  2. 2.Departamento de FísicaUniversidade Federal do ParanáCuritibaBrazil

Personalised recommendations