Gravitation and Cosmology

, Volume 16, Issue 2, pp 168–172 | Cite as

Zel’dovich states with very small mass and charge in nonlinear electrodynamics coupled to gravity

  • O. B. ZaslavskiiEmail author


It is shown that, in nonlinear (in particular, Born-Infeld) electrodynamics in the framework of general relativity, there exist “weakly singular” configurations such that (i) the proper mass M is finite despite divergences of the energy density, (ii) the electric charge q and the Schwarzschild mass m ∼ q can be made as small as one likes, and (iii) all field and energy distributions are concentrated in the core region. This region has an almost zero surface area but a finite longitudinal size L = 2M. Such configurations can be viewed as a new version of a classical analogue of an elementary particle.


Core Region Small Mass Gravitational Mass Nonlinear Electrodynamic Longitudinal Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Born and L. Infeld, Proc. Roy. Soc, A 144, 425 (1934).zbMATHCrossRefADSGoogle Scholar
  2. 2.
    K. A. Bronnikov and G. N. Shikin, in: Classical and Quantum Theory of Gravity (Trudy IF AN BSSR, Minsk, 1976), p. 88 (in Russian).Google Scholar
  3. 3.
    K. A. Bronnikov, V. N. Melnikov, G. N. Shikin, and K. P. Staniukovich, Ann. Phys. (N.Y.) 118, 84 (1979).CrossRefADSGoogle Scholar
  4. 4.
    K. A. Bronnikov, Phys. Rev. Lett. 85, 4641 (2000).CrossRefADSGoogle Scholar
  5. 5.
    K. A. Bronnikov, Phys. Rev. D 63, 044005 (2001).CrossRefMathSciNetADSGoogle Scholar
  6. 6.
    S. H. Mazharimousavi and M. Hallisoy, Phys. Lett. B 678, 407 (2009).CrossRefMathSciNetADSGoogle Scholar
  7. 7.
    G. N. Shikin, Foundations of Soliton Theory in General Relativity (Moscow, URSS, 1995) (in Russian).Google Scholar
  8. 8.
    M. A. Markov, Ann. Phys. 59, 109 (1970).CrossRefADSGoogle Scholar
  9. 9.
    W. B. Bonnor and F. I. Cooperstock, Phys. Lett. A 139, 442 (1989).CrossRefADSGoogle Scholar
  10. 10.
    Ya. B. Zel’dovich. Zh. Eksp. Teor. Fiz. 42, 641 (1962) [Soviet Phys. JETP 15, 446 (1962)].Google Scholar
  11. 11.
    V. A. Berezin, Nucl. Phys. B 661, 409 (2003).zbMATHMathSciNetADSGoogle Scholar
  12. 12.
    O. B. Zaslavskii, Gen. Rel. Grav. 38, 945 (2006).zbMATHCrossRefMathSciNetADSGoogle Scholar
  13. 13.
    C. Leibovicz and W. Israel. Phys. Rev. 1, 3226 (1970).ADSGoogle Scholar
  14. 14.
    M. A. Markov and V. P. Frolov, Teor.Mat. Fiz. 13, 41 (1972) [Theor.Math. Phys. 13, 965, 1972].Google Scholar
  15. 15.
    M. A. Markov, Uspekhi Fiz. Nauk 111, 3 (1973) [Sov. Phys. Uspekhi 16, 587 (1973)].ADSGoogle Scholar
  16. 16.
    V. A. Berezin, Teor. Mat. Fiz. 44, 421 (1980) [Theor. Math. Phys. 44, 836 (1980)].ADSGoogle Scholar
  17. 17.
    P. I. Fomin and V. V. Kuzmichev, Phys. Rev. D 49, 1854 (1994).CrossRefADSGoogle Scholar
  18. 18.
    V. Dzhunushaliev, Nonperturbative Quantum Corrections, ARXiv:1002.0180.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Astronomical Institute of Kharkov V.N. Karazin National UniversityKharkovUkraine

Personalised recommendations