Advertisement

Gravitation and Cosmology

, Volume 16, Issue 1, pp 34–41 | Cite as

On creating mass/matter by extra dimensions in the Einstein-Gauss-Bonnet gravity

  • A. N. Petrov
Article

Abstract

Kaluza–Klein (KK) black hole solutions in the Einstein–Gauss–Bonnet (EGB) gravity in D dimensions obtained in the current series of the works by Maeda, Dadhich and Molina are examined. Interpreting their solutions, the authors claim that mass/matter is created by the extra dimensions. To support this claim, one needs to show that such objects have classically defined masses. We calculate the mass and mass flux for 3D KK black holes in 6D EGB gravity whose properties are sufficiently physically interesting. Superpotentials for arbitrary types of perturbations on arbitrary curved backgrounds, recently obtained by the author, are used, and acceptable mass and mass flux are obtained. A possibility of considering the KK created matter as dark matter in the Universe is discussed.

Keywords

Black Hole Dark Matter Extra Dimension Black Hole Solution Global Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Maeda and N. Dadhich, Phys. Rev. D 74, 021501(R)(2006); hep-th/0605031.MathSciNetADSGoogle Scholar
  2. 2.
    H. Maeda and N. Dadhich, Phys. Rev. D 75, 044007 (2007); hep-th/0611188.CrossRefADSGoogle Scholar
  3. 3.
    N. Dadhich and H. Maeda, Int. J. Mod. Phys. D 17, 513 (2008); arXiv: 0705.2490.zbMATHCrossRefMathSciNetADSGoogle Scholar
  4. 4.
    A. Molina and N. Dadhich, Int. J. Mod. Phys. D 18, 599 (2009); arXiv: 0804.1194.zbMATHCrossRefMathSciNetADSGoogle Scholar
  5. 5.
    A. A. Starobinsky, Phys. Lett. B 91, 99 (1980).CrossRefADSGoogle Scholar
  6. 6.
    K. A. Bronnikov, R. V. Konoplich and S. G. Rubin, Class. Quantum Grav. 24, 1261 (2007); gr-qc/0610003.zbMATHCrossRefMathSciNetADSGoogle Scholar
  7. 7.
    A. N. Petrov, Class. Quantum Grav. 22, L83 (2005);gr-qc/0504058.zbMATHCrossRefADSGoogle Scholar
  8. 8.
    A. N. Petrov, 2-nd chapter in Classical and Quantum Gravity Research, Ed. by M. N. Christiansen and T. K. Rasmussen (Nova Science Publishers, N.Y., 2008), p. 79; arXiv: 0705.0019.Google Scholar
  9. 9.
    A. N. Petrov, Class. Quantum Grav. 26, 135010 (2009); arXiv: 0905.3622.CrossRefADSGoogle Scholar
  10. 10.
    M. Bañados, C. Teitelboim, and J. Zanelli, Phys. Rev. Lett. 69, 1849 (1992); hep-th/9204099.zbMATHCrossRefMathSciNetADSGoogle Scholar
  11. 11.
    J. Crisóstomo J. R. Troncoso, and J. Zanelli, Phys. Rev. D 62 084013 (2000); hep-th/0003271.CrossRefMathSciNetADSGoogle Scholar
  12. 12.
    R.-G. Cai, Phys. Rev. D 65, 084014 (2002); hep-th/01092133.CrossRefMathSciNetADSGoogle Scholar
  13. 13.
    R. Emparan and H. S. Reall, Living Rev. Rel. 11, 6 (2008); arXiv: 0801.3471.Google Scholar
  14. 14.
    N. Deruelle, J. Katz, and S. Ogushi, Class. Quantum Grav. 21, 1971 (2004); gr-qc/0310098.zbMATHCrossRefMathSciNetADSGoogle Scholar
  15. 15.
    H. Bondi, A. W. K. Metzner, and M. J. C. Van der Berg, Proc. R. Soc. A London 269, 21 (1962).zbMATHCrossRefADSGoogle Scholar
  16. 16.
    J. Katz and G. I. Livshits, Class. Quantum Grav. 25, 175024 (2009); arXiv:0807.3079.CrossRefMathSciNetADSGoogle Scholar
  17. 17.
    J. Katz, J. Bičak, and D. Lynden-Bell, Phys. Rev. D 55 5957 (1997); gr-qc/0504041.CrossRefGoogle Scholar
  18. 18.
    R. Olea, JHEP 0506, 023 (2005); hep-th/0504233.CrossRefMathSciNetADSGoogle Scholar
  19. 19.
    V. Sahni and A. Starobinsky, Int. J. Mod. Phys. D 9, 373 (2000); astro-ph/9904398.ADSGoogle Scholar
  20. 20.
    V. N. Lukash, Cosmological models: theory and observations, astro-ph/0012012.Google Scholar
  21. 21.
    A. D. Chernin, Usp. Fiz. Nauk 171, 1153 (2001).CrossRefGoogle Scholar
  22. 22.
    T. Padmanabhan, Phys. Rep. 380 235 (2003); hep-th/0212290.CrossRefMathSciNetGoogle Scholar
  23. 23.
    V. Sahni and A. Starobinsky, Int. J. Mod. Phys. D 15, 2105 (2006); astro-ph/0610026.zbMATHCrossRefMathSciNetADSGoogle Scholar
  24. 24.
    E. Mikheeva, A. Doroshkevich, and V. Lukash, Nuovo Cim. 122B, 1393 (2007); arXiv: 0712.1688.ADSGoogle Scholar
  25. 25.
    A. D. Chernin, Usp. Fiz. Nauk 178, 267 (2008).CrossRefGoogle Scholar
  26. 26.
    V. N. Lukash and V. A. Rubakov, Usp. Fiz. Nauk 178, 301 (2008); arXiv: 0807.1635.CrossRefGoogle Scholar
  27. 27.
    T. Nieuwenhuizen, EPL 86, 59001–6 (2009).CrossRefADSGoogle Scholar
  28. 28.
    Y. K. Ha, Int. J. Mod. Phys. A 24, 3577 (2009); arXiv: 0906.3549.zbMATHCrossRefADSGoogle Scholar
  29. 29.
    Ph. von Freud, Ann. of Math. 40, 417 (1939).CrossRefMathSciNetGoogle Scholar
  30. 30.
    A. N. Petrov and J. Katz, Proc. R. Soc. A London 458, 319 (2002); gr-qc/9911025.zbMATHCrossRefMathSciNetADSGoogle Scholar
  31. 31.
    A. Papapetrou, Proc. R. Irish Ac. 52, 11 (1948).MathSciNetGoogle Scholar
  32. 32.
    S. Deser and B. Tekin, Phys. Rev. D 67 084009 (2003); hep-th/0212292.CrossRefMathSciNetADSGoogle Scholar
  33. 33.
    L. F. Abbott and S. Deser, Nucl. Phys. B 195, 76 (1982).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Inter-University Center for Astronomy and AstrophysicsGaneshkhind, Pune 411 007India
  2. 2.Relativistic Astrophysics group, Sternberg Astronomical InstituteMoscowRussia

Personalised recommendations