Advertisement

Gravitation and Cosmology

, Volume 16, Issue 1, pp 1–6 | Cite as

Detection of dark energy near the Milky Way with the Hubble Space Telescope

  • A. D. Chernin
  • I. D. Karachentsev
  • P. Teerikorpi
  • M. J. Valtonen
  • G. G. Byrd
  • Yu. N. Efremov
  • V. P. Dolgachev
  • L. M. Domozhilova
  • D. I. Makarov
Article

Abstract

The global expansion of the observed Universe is accelerated by cosmic antigravity—this has been found [1,2] with high-redshift type Ia supernova observations at the very large distances of more than 1000 Mpc, half-way to the observation horizon. Antigravity is produced by enigmatic dark energy which contributes about 3/4 to the total energy of the Universe [1, 2]; this figure is also confirmed by cosmic microwave background (CMB) anisotropy studies [3, 4]. Does antigravity act on relatively small scales as well as on global ones? High-accuracy observations of the local expansion flow made with the Hubble Space Telescope enable us to discover antigravity and to estimate dark energy density in the Local Universe at distances of a few Mpc from us. The result is entirely independent of large-distance observations or CMB studies; however, it is compatible with and complementary to them. Together with the results of [1–4], this forms direct observational evidence for antigravity as a universal cosmic phenomenon existing on small and large scales. Antigravity and dark energy are little understood, and elucidating their physical nature provides perhaps the biggest challenge in physical cosmology.

Keywords

Dark Matter Dark Energy Local Group Hubble Space Telescope Dwarf Galaxy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. G Riess, A. V. Filippenko, P. Challis, et al., As-troph. J. 116, 1009 (1998).ADSGoogle Scholar
  2. 2.
    S. Perlmuter, G. Aldering, G. Goldhaber, et al., As-troph. J. 517, 565 (1999).ADSGoogle Scholar
  3. 3.
    D. N. Spergel et al., Astrophys. J. Suppl. 148, 175 (2003).CrossRefADSGoogle Scholar
  4. 4.
    D. N. Spergel et al., Astrophys. J. Suppl. 170, 337 (2007).CrossRefADSGoogle Scholar
  5. 5.
    E. B. Gliner, Sov. Phys. Sov. Phys. JETP 22, 378 (1966).ADSGoogle Scholar
  6. 6.
    I. D. Karachentsev, A. E. Dolphin, R. B. Tully et al., AJ 131, 1361 (2006).CrossRefADSGoogle Scholar
  7. 7.
    I. D. Karachentsev, M. E. Sharina, E. K. Grebel et al., Astron. and Astrophys. 352, 399 (1999).ADSGoogle Scholar
  8. 8.
    I. D. Karachentsev, M. E. Sharina, A. E. Dolphin et al., Astron. and Astrophys. 385, 21 (2002).CrossRefADSGoogle Scholar
  9. 9.
    I. D. Karachentsev, M. E. Sharina, A. E. Dolphin, and E. K. Grebel, Astron. and Astrophys. 408, 111 (2003).CrossRefADSGoogle Scholar
  10. 10.
    P. Teerikorpi et al., Astron. and Astrophys. 347, 99 (1999).ADSGoogle Scholar
  11. 11.
    A.D. Chernin, P. Teerikorpi, and Yu. V. Baryshev, Adv. Space Res. 31, 459 (2003); A. D. Chernin, Physics-Uspekhi 44, 1099 (2001).CrossRefADSGoogle Scholar
  12. 12.
    A. D. Chernin, Physics-Uspekhi 51, 267 (2008).CrossRefGoogle Scholar
  13. 13.
    A. D. Chernin, I. D. Karachentsev, M. J. Valtonen, et al., Astron. and Astrophys. 467, 933 (2005); Astron. and Astrophys. 415, 19 (2004); V. P. Dolgachev, L. M. Domozhilova, and A. D. Chernin, Astr. Rep. 47, 728 (2003).CrossRefADSGoogle Scholar
  14. 14.
    G. G. Byrd, M. J. Valtonen, M. McCall, and K. Inna-nen, Astronph. J. 107, 2055 (1994).CrossRefADSGoogle Scholar
  15. 15.
    F. Thim, G. Tammann, A. Saha et al., Astroph. J. 590, 256 (2003).CrossRefADSGoogle Scholar
  16. 16.
    A. Sandage, G. Tamman, and B. Reindl, Astron. and Astrophys.424, 43 (2004).CrossRefADSGoogle Scholar
  17. 17.
    A. Sandage, G. Tamman, and A. Saha, Astroph. J. 653, 843 (2006).CrossRefADSGoogle Scholar
  18. 18.
    A. Sandage, Astroph. J. 307, 1 (1986); Astroph. J. 527, 479 (1999).CrossRefADSGoogle Scholar
  19. 19.
    I. D. Karachentsev, A. D. Chernin, and P. Teerikorpi, Astrofizika 46, 491 (2003).Google Scholar
  20. 20.
    E. Hubble, The Realm of the Nebulae (Oxford: Oxford Univ. Press, 1936).Google Scholar
  21. 21.
    S. van den Bergh, Astroph. J. 124, 782 (2002).ADSGoogle Scholar
  22. 22.
    S. van den Bergh, Astroph. J. 559, L113 (2001).CrossRefADSGoogle Scholar
  23. 23.
    A. D. Chernin, I. D. Karachentsev, M. J. Valtonen et al., Astrophys. 50, 405 (2007).CrossRefADSGoogle Scholar
  24. 24.
    A. D. Chernin, I. D. Karachentsev, M. J. Valtonen, et al., Astron. and Astrophys. 26, 275 (2007).Google Scholar
  25. 25.
    K. Nagamine, R. Cen, and J. P. Ostriker, Bull. Amer. Astron. Soc. 31, 1393 (1999).ADSGoogle Scholar
  26. 26.
    J. P. Ostriker and Y. Suto, Astroph. J. 348, 378 (1990).CrossRefADSGoogle Scholar
  27. 27.
    A. V. Macció, F. Governato, and C. Horellou, MN-RAS 359, 941 (2005).CrossRefADSGoogle Scholar
  28. 28.
    I. D. Karachentsev and O. G. Kashibadze, MNRAS (2010) (in press).Google Scholar
  29. 29.
    A. D. Chernin, I. D. Karachentsev, O. G. Kashibadze et al. (in preparation).Google Scholar
  30. 30.
    I. D. Karachentsev et al., MNRAS 393, 126 (2009).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • A. D. Chernin
    • 1
    • 2
  • I. D. Karachentsev
    • 3
  • P. Teerikorpi
    • 2
  • M. J. Valtonen
    • 2
  • G. G. Byrd
    • 4
  • Yu. N. Efremov
    • 1
  • V. P. Dolgachev
    • 1
  • L. M. Domozhilova
    • 1
  • D. I. Makarov
    • 3
  1. 1.Sternberg Astronomical InstituteMoscow UniversityMoscowRussia
  2. 2.Tuorla ObservatoryTurku UniversityPiikkiöFinland
  3. 3.Special Astrophysical ObservatoryNizhnii ArkhysRussia
  4. 4.University of AlabamaTuscaloosaUSA

Personalised recommendations