Advertisement

Gravitation and Cosmology

, 15:353 | Cite as

Interacting spinor and scalar fields in a bianchi type-I universe filled with viscous fluid: Exact and numerical solutions

  • Bijan SahaEmail author
Article

Abstract

We consider a self-consistent system of spinor and scalar fields in a Bianchi type I gravitational field filled with a viscous fluid in the presence of a cosmological constant. Exact solutions to the set of spinor, scalar and gravitational field equations are obtained in terms of v, the volume scale of Bianchi-I universe. A set of equations for v and ε, where ε is the energy of the viscous fluid, is deduced. Some special cases allowing exact solutions are thoroughly studied.

PACS numbers

03.65.Pm 04.20.Ha 

References

  1. 1.
    W. Misner, Nature 214, 40 (1967).CrossRefADSGoogle Scholar
  2. 2.
    W. Misner, Astrophys. J. 151, 431 (1968).CrossRefADSGoogle Scholar
  3. 3.
    S. Weinberg, Astrophys. J. 168, 175 (1972).CrossRefADSGoogle Scholar
  4. 4.
    S. Weinberg, Gravitation and Cosmology (New York, Wiley, 1972)Google Scholar
  5. 5.
    P. Langacker, Phys. Rep. 72, 185 (1981).CrossRefADSGoogle Scholar
  6. 6.
    I. Waga, R. C. Falcao, and R. Chanda, Phys. Rev. D 33, 1839 (1986).CrossRefADSGoogle Scholar
  7. 7.
    T. Pacher, J. A. Stein-Schabes, and M. S. Turner, Phys. Rev. D 36, 1603 (1987).CrossRefADSGoogle Scholar
  8. 8.
    A. H. Guth, Phys. Rev. D 23, 347 (1981).CrossRefADSGoogle Scholar
  9. 9.
    G. L. Murphy, Phys. Rev. D 8, 4231 (1973).CrossRefADSGoogle Scholar
  10. 10.
    N. O. Santos, R. S. Dias, and A. Banerjee, J.Math. Phys. 26, 876 (1985).CrossRefMathSciNetADSGoogle Scholar
  11. 11.
    V. A. Belinsky and I. M. Khalatnikov, JETP 69, 401 (1975).Google Scholar
  12. 12.
    Bijan Saha, Mod. Phys. Lett. A 20(28), 2127 (2005).zbMATHCrossRefMathSciNetADSGoogle Scholar
  13. 13.
    Bijan Saha and V. Rikhvitsky, Physica D 219, 168 (2006).zbMATHCrossRefMathSciNetADSGoogle Scholar
  14. 14.
    B. Saha and G. N. Shikin, J. Math. Phys. 38, 5305 (1997).zbMATHCrossRefMathSciNetADSGoogle Scholar
  15. 15.
    Bijan Saha, Phys. Rev. D 64, 123 501 (2001).CrossRefMathSciNetGoogle Scholar
  16. 16.
    B. Saha and G. N. Shikin, Gen. Relat. Grav. 29, 1099 (1997).zbMATHCrossRefMathSciNetADSGoogle Scholar
  17. 17.
    Bijan Saha, Mod. Phys. Lett. A 16, 1287 (2001).zbMATHCrossRefMathSciNetADSGoogle Scholar
  18. 18.
    B. Saha, Phys. Rev. D 74, 124 030 (2006).CrossRefMathSciNetGoogle Scholar
  19. 19.
    Bijan Saha, Romanian Report in Physics 57(1), 7 (2005).Google Scholar
  20. 20.
    Bijan Saha, Astrophys. Space Sci. 312, 3 (2007).zbMATHCrossRefADSGoogle Scholar
  21. 21.
    M. Fierz, Z. Phys. 104, 553 (1937).CrossRefADSGoogle Scholar
  22. 22.
    F. A. Kaempffer, Phys. Rev. D 23, 918 (1981)CrossRefMathSciNetADSGoogle Scholar
  23. 23.
    Y. Takahashi, Phys. Rev. D 26, 2169 (1982).CrossRefMathSciNetADSGoogle Scholar
  24. 24.
    V. B. Berestetski, E. M. Lifshitz, and L. P. Pitaevski, Quantum Electrodynamics (Nauka, Moscow, 1989).Google Scholar
  25. 25.
    M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory (Reading, MA, Addison-Wesley, 1995).Google Scholar
  26. 26.
    K. C. Jacobs, Astrophys. J. 153, 661 (1968).CrossRefADSGoogle Scholar
  27. 27.
    L. P. Chimento, Phys. Rev. D 68, 023504 (2003).CrossRefMathSciNetADSGoogle Scholar
  28. 28.
    V. A. Zhelnorovich, Spinor Theory and Its Application in Physics and Mechanics (Nauka, Moscow, 1982).Google Scholar
  29. 29.
    D. Brill and J. Wheeler, Rev. Mod. Phys. 29, 465 (1957).zbMATHCrossRefMathSciNetADSGoogle Scholar
  30. 30.
    N. N. Bogoliubov and D. V. Shirkov, Introduction to Quantized Field Theory (Nauka, Moscow, 1984).Google Scholar
  31. 31.
    K. A. Bronnikov, E. N. Chudaeva, and G. N. Shikin, Class. Quantum Grav. 21, 3389 (2004).zbMATHCrossRefMathSciNetADSGoogle Scholar
  32. 32.
    N. V. Mitskevich, A. P. Efremov, and A. I. Nesterov, Dynamics of Fields in General Relativity (Energoatomizdat, Moscow, 1985).Google Scholar
  33. 33.
    E. Kamke, Differentialgleichungen: Losungsmethoden und Losungen (Leipzig, 1957).Google Scholar
  34. 34.
    W. Heisenberg, Introduction to the Unified Field Theory of Elementary Particles (Interscience Publ., London, 1966).zbMATHGoogle Scholar
  35. 35.
    A. Banerjee, S. B. Duttachoudhury, and A. K. Sanyal, J.Math. Phys. 26, 3010 (1985).zbMATHCrossRefMathSciNetADSGoogle Scholar
  36. 36.
    W. Huang, J. Math. Phys. 31, 1456 (1990).zbMATHCrossRefMathSciNetADSGoogle Scholar
  37. 37.
    A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series. Vol. 1: Elementary Functions (New York, Gordon and Breach, 1986).zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Laboratory of Information TechnologiesJoint Institute for Nuclear ResearchDubna, Moscow oblastRussia

Personalised recommendations