Gravitation and Cosmology

, 15:341 | Cite as

On particle creation and renormalization in a cosmological model with a Big Rip

Article

Abstract

An exact solution is obtained for a massive scalar field conformally coupled with the curvature in a cosmological model with the scale factor a(t) = a0/|t|, corresponding to background matter with the equation of state p = −5ε/3. An expression for the number density of created particles is obtained, and its behavior is studied as the model approached the instant of a Big Rip. Renormalization of the energy-momentum tensor is considered, and it is shown that back reaction of the quantum effects of a conformally coupled scalar field on the space-time metric can be neglected if the field mass is much smaller than the Planck mass and if the time left to the Big Rip is greater than the Planck time.

PACS numbers

04.62.+v 

References

  1. 1.
    A. A. Grib, S.G. Mamayev, and V.M. Mostepanenko, Vacuum Quantum Effects in Strong Fields (Energoatomizdat, Moscow, 1988, in Russian; English translation: Friedmann Lab. Publ., St. Petersburg, 1994).Google Scholar
  2. 2.
    A. A. Grib and Yu. V. Pavlov, Int. J. Mod. Phys. D 11, 433 (2002); Int. J.Mod. Phys. A 17, 4435 (2002); Grav. Cosmol. 14, 1 (2008).CrossRefADSGoogle Scholar
  3. 3.
    A. A. Grib and Yu. V. Pavlov, Mod. Phys. Lett. A 23, 1151 (2008); Grav. Cosmol. 15, 44 (2009).MATHCrossRefADSGoogle Scholar
  4. 4.
    Yu. V. Pavlov, Teor.Mat. Fiz. 126, 115 (2001) [English transl.: Theor.Math. Phys. 126, 92 (2001)].Google Scholar
  5. 5.
    A. A. Starobinsky, Grav. Cosmol. 6, 157 (2000); R. R. Caldwell, Phys. Lett. B 545, 23 (2002).MATHADSGoogle Scholar
  6. 6.
    V. F. Zaitsev and A. D. Polyanin, Handbook of Ordinary Differential Equations (Fizmatlit, Moscow, 2001, in Russian).Google Scholar
  7. 7.
    Higher Transcendental Functions (Bateman Manuscript Project), Vol. 1. Ed. A. Erdélyi (McGraw-Hill, New York, 1953).Google Scholar
  8. 8.
    Ya. B. Zel’dovich and A. A. Starobinsky, JETF 61, 2161 (1971); [Sov. Phys. JETP 34, 1159 (1972)].ADSGoogle Scholar
  9. 9.
    Yu. V. Pavlov, Teor.Mat. Fiz. 138, 453 (2004) [Theor. Math. Phys. 138, 383 (2004)].Google Scholar
  10. 10.
    A. B. Batista, J. C. Fabris, and S. J. M. Houndjo, Grav. Cosmol. 14, 140 (2008).MATHCrossRefADSGoogle Scholar
  11. 11.
    S. Nojiri and S. D. Odintsov, Phys. Lett. B 595, 1 (2004).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Institute of Mechanical EngineeringRussian Acad. Sci.St. PetersburgRussia
  2. 2.Friedmann Laboratory for Theoretical PhysicsSt. PetersburgRussia

Personalised recommendations