Gravitation and Cosmology

, Volume 15, Issue 3, pp 278–285 | Cite as

Gravitational instability of perturbations in a background nonlinear nonstationary model of a disklike system. I. Sectorial modes

  • K. T. MirtadjievaEmail author


Using a nonstationary generalization of the Bisnovatyi-Kogan-Zel’dovich well-known isotropic model, a new model of a nonstationary self-gravitating disklike system is constructed, with an anisotropic velocity diagram. This model is formed as a linear superposition of two exact models with the same nonstationarity law. We investigate the stability of the new model under sectorial modes of perturbations up to the 10th order inclusive. The results are presented in the form of critical dependencies of the initial virial ratio on the rotation and superposition parameters. The dependences of the instability increments on the basic physical parameters of the model are presented.

PACS numbers



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. S. Bisnovatyi-Kogan and Ya. B. Zel’dovich, Astrofizika 6, 387 (1970).ADSGoogle Scholar
  2. 2.
    A. J. Kalnajs, Astrophys. J. 175, 63 (1972).CrossRefADSGoogle Scholar
  3. 3.
    V. A. Antonov, Uch. Zapiski of LGU 32, 79 (1976).MathSciNetGoogle Scholar
  4. 4.
    J. Binney and S. Tremaine, Galactic Dynamics (Princeton Univ. Press, XV, 1987), p. 733.zbMATHGoogle Scholar
  5. 5.
    A. M. Fridman and V. L. Polyachenko, Physics of Gravitating Systems (New York, Springer-Verlag, 1984).Google Scholar
  6. 6.
    S. N. Nuritdinov, Dynamics of Gravitating Systems and Methods of Analytical Celestial Mechanics (Mauka, Alma-Ata, 1987), p. 65.Google Scholar
  7. 7.
    S. N. Nuritdinov, K. T. Mirtadjieva, and Miriam Sultana, Astrofizika 51, 487 (2008).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Physical facultyNational University of UzbekistanVuzgorodok, TashkentUzbekistan

Personalised recommendations