Gravitation and Cosmology

, Volume 15, Issue 3, pp 224–233 | Cite as

Dynamics of multiparticle systems on the symplectic extension of the Schwarzschild space-time manifold

  • N. N. FiminEmail author


Methods of extension of the Schwarzschild metrics to the 8D symplectic phase manifold are considered. The method used is based on Sasaki’s metric of the tangent bundle over the pseudo-Riemannian 4D space-time manifold.

PACS numbers

04.70.Bw 04.40.-b 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. P. Frolov and I. D. Novikov, Black Holes: Basic Concepts and New Developments (Birkhauser, New York-Boston-Heidelberg, 1997).Google Scholar
  2. 2.
    J. Stewart, Advanced General Relativity (Cambridge University Press, Cambridge, 1996).Google Scholar
  3. 3.
    L. P. Hugston and K. P. Tod, An Introduction to General Relativity (Cambridge University Press, Cambridge, 1994).Google Scholar
  4. 4.
    M. Ludvigsen, General Relativity. A Geometric Approach (Cambridge University Press, Cambridge, 1999).zbMATHCrossRefGoogle Scholar
  5. 5.
    R. K. Sachs and H. Wu, General Relativity for Mathematicians (Springer-Verlag, New York-Heidelberg-Berlin, 1977).zbMATHGoogle Scholar
  6. 6.
    N. Straumann, General Relativity and Relativistic Astrophysics (Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1984).Google Scholar
  7. 7.
    F. De Felicem and C. J. S. Clarke, Relativity on Curved Manifolds (Cambridge University Press, Cambridge, 1990).Google Scholar
  8. 8.
    B. S. De Witt, Phys. Rep. 19, 295 (1975).CrossRefADSGoogle Scholar
  9. 9.
    N. D. Birrell and P. C. W. Davies, Quantum Field in Curved Space (Cambridge University Press, Cambridge, 1982).Google Scholar
  10. 10.
    H. Stephani, Relativity: An Introduction to Special and General Relativity (Cambridge University Press, Cambridge, 2004).CrossRefGoogle Scholar
  11. 11.
    J. Karkowski, E. Malec, and Z. Swierczynski, Schwarzschild Black Holes and Propagation of Electromagnetic and Gravitational Waves, grqc/0204086.Google Scholar
  12. 12.
    J. Tian, Ya. Gui, G. Guo, S. Zhang, and W. Wang, The Real Scalar Field in Schwarzschild — de Sitter Spacetime, gr-qc/0304009.Google Scholar
  13. 13.
    K. D. Kokkotas and B. G. Schmidt, Quasi-Normal Modes of Stars and Black Holes, gr-qc/9909058.Google Scholar
  14. 14.
    J. Ehlers and R. Geroch, Equation of Motion of Small Bodies in Relativity, gr-qc/0309074.Google Scholar
  15. 15.
    S. Hayward, Phys. Rev. D 49, (1994).Google Scholar
  16. 16.
    T. K. Das, Behavior of Matter Close to the Event Horizon, astro-ph/0312548.Google Scholar
  17. 17.
    R. Narayan, R. Mahadevan, and E. Quataert, in: Proc. Reykjavic Symp. on Non-Linear Phenomena in Accretion Disks around Black Holes, Ed. by M. Abramowicz, G. Bjornsson, and J. Pringle (Reykjavik, 1997).Google Scholar
  18. 18.
    N. E. Bjerrum-Bohr, J. F. Donoghue, and B. R. Holstein, Phys. Rev. D 67, 084033-1 (2003).Google Scholar
  19. 19.
    A. N. Petrov and J. Katz, Proc.Roy. Soc. London 458, 319 (2002).zbMATHCrossRefMathSciNetADSGoogle Scholar
  20. 20.
    G. Kälbermann, Diffraction of Wave Packet in Space and Time, quant-ph/0008077.Google Scholar
  21. 21.
    G.’ t Hooft, The ScatteringMatrix Approach for the Quantum Black Hole, gr-qc/9607022.Google Scholar
  22. 22.
    C. P. Burgess, Quantum Gravity in Everyday Life: General Relativity as an Effective Field Theory, (2004).
  23. 23.
    S. Liberati, Quantum Vacuum Effects in Gravitational Fields: Theory and Detectability, PhD Thesis (International School for Advanced Studies, Trieste, Italy, 2000).Google Scholar
  24. 24.
    M. Heusler, Stationary Black Holes: Uniqueness and Beyond, ITP, University of Zurich, (1998).
  25. 25.
    H. E. Brandt, Chaos, Solitons, and Fractals 10, 267 (1999).zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    H. E. Brandt, Found. of Physics Lett. 13, 307 (2000).CrossRefMathSciNetADSGoogle Scholar
  27. 27.
    H. E. Brandt, Found. of Physics Lett. 5, 221 (1992).CrossRefMathSciNetADSGoogle Scholar
  28. 28.
    E. R. Caianiello, Nuovo Cim. B 59, 350 (1980).CrossRefMathSciNetADSGoogle Scholar
  29. 29.
    E. R. Caianiello, Lett. Nuovo Cim. 32, 65 (1981).CrossRefMathSciNetGoogle Scholar
  30. 30.
    E. R. Caianiello, Rivista del Nuovo Cimento 15, 432 (1992).CrossRefMathSciNetGoogle Scholar
  31. 31.
    G. S. Asanov, Finsler Geometry, Relativity, and Gauge Theories (Reidel, 1985).Google Scholar
  32. 32.
    G. S. Asanov and S. F. Ponomarenko, AFinslerBundle over Space-Time, Associated Gauge Fields and Connections (Shtiintsa, Kishinev, 1989, in Russian).Google Scholar
  33. 33.
    D. Bao, S. S. Chern, and Z. Shen, An Introduction to Riemann-Finsler Geometry (Springer, Berlin-Heidelberg, 1999).Google Scholar
  34. 34.
    K. Yano and S. Ishihara, Tangent and Cotangent Bundles (New York, Marcel Dekker Inc., 1973).zbMATHGoogle Scholar
  35. 35.
    V. G. Bagrov, G. S. Bisnovatyi-Kogan, V. A. Bordovitsyn, et al., Relativistic Particles’ Radiation Theory (Fizmatlit, Moscow, 2002, in Russian).Google Scholar
  36. 36.
    A. Kawaguchi, Transactions of the A. M. S. 44, 158 (1938).MathSciNetGoogle Scholar
  37. 37.
    S. Sasaki, Tohoku Math. J. 10, 338 (1958).zbMATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    R. C. Tolman, Proc. Nat. Acad. Sci. US 20, 169 (1934).CrossRefADSGoogle Scholar
  39. 39.
    J. R. Oppenheimer and H. Snyder, Phys. Rev. 56, 455 (1939).zbMATHCrossRefADSGoogle Scholar
  40. 40.
    C. Hellaby and K. Lake, Astroph. J. 290, 381 (1985).CrossRefMathSciNetADSGoogle Scholar
  41. 41.
    C. J. S. Clarke and N. O’Donnell, Rend. Sem. Mat. Univ. Pol. Torino 50, 39 (1992).zbMATHMathSciNetGoogle Scholar
  42. 42.
    C. Hellaby, Some Properties of Singularities in the Tolman Model, PhD Thesis (Queen’s University of Ontario, Kingston, Canada, 1985).Google Scholar
  43. 43.
    L. D. Landau and E.M. Lifshitz, Classical Theory of Fields (Fizmatlit, Moscow, 2001, in Russian).Google Scholar
  44. 44.
    S. Lang, Introduction to Differentiable Manifolds (2nd edition, Springer-Verlag, New York, 2002).zbMATHGoogle Scholar
  45. 45.
    Ya. B. Zeldovich and L. P. Grishchuk, Mon. Not. Roy. Astron. Soc. 207, 23 (1984).ADSGoogle Scholar
  46. 46.
    J. L. Synge, Relativity: The Special Theory (North-Holland Publishing Company, Amsterdam, 1956).zbMATHGoogle Scholar
  47. 47.
    J. L. Synge, Relativity: TheGeneral Theory (North-Holland Publishing Company, Amsterdam, 1960).Google Scholar
  48. 48.
    S. R. de Groot, W. A. van Leeuwen, and Gh. G. van Weert, Relativistic Kinetic Theory: Principles and Applications (North-Holland Publishing Company, Amsterdam-New York-Oxford, 1980).Google Scholar
  49. 49.
    J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).zbMATHGoogle Scholar
  50. 50.
    D. V. Gal’tsov, Phys. Rev. D 66, 025016 (2002).Google Scholar
  51. 51.
    D. V. Gal’tsov and P. A. Spirin, Grav. Cosmol. 12, 1 (2006).zbMATHMathSciNetADSGoogle Scholar
  52. 52.
    D. V. Gal’tsov and P. A. Spirin, Grav. Cosmol. 13, 241 (2007).zbMATHMathSciNetADSGoogle Scholar
  53. 53.
    E. Poisson, The Motion of Point Particles in the Curved Spacetime, Living Rev. Relativity 7, (2004).
  54. 54.
    Y. Mino, M. Sasaki, and T. Tanaki, Phys. Rev. D 55, 3457 (1997).CrossRefADSGoogle Scholar
  55. 55.
    T. C. Quinn and R. M. Wald, Phys. Rev. D 56, 3381 (1997).CrossRefMathSciNetADSGoogle Scholar
  56. 56.
    W. Hikida, H. Nakano, and M. Sasaki, Self-Force Regularization in the Schwarzschild Spacetime, gr-qc/0411150.Google Scholar
  57. 57.
    C.W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (W.H. Freeman and Company, San Francisco, 1973).Google Scholar
  58. 58.
    R. Miron, D. Hrimiuc, H. Shimada, and S. Sabau, The Geometry of Hamilton and Lagrange Spaces (Kluwer Academic Publishers, New York-Boston-Dordrecht-London-Moscow, 2002).Google Scholar
  59. 59.
    R. Miron and M. Anastaiei, The Geometry of Lagrange Spaces: Theory and Applications (Kluwer Academic Publishers, New York-Boston-London, 1994).zbMATHGoogle Scholar
  60. 60.
    A. Sandovici, Rend. Sem. Mat. Univ. Pol. Torino 63, 255 (2005).zbMATHMathSciNetGoogle Scholar
  61. 61.
    S. Capozziello, A. Feoli, G. Lambiase, G. Papini, and G. Scarpetta, Massive Scalar Particles in a Modified Schwarzschild Geometry, gr-qc/0003087.Google Scholar
  62. 62.
    M. Crasmareanu, Novi Sad J.Math. 33, 11 (2003).zbMATHMathSciNetGoogle Scholar
  63. 63.
    D. Husemoller, Fibre Bundles (MvGraw-Hill Book Company, New York-St. Louis-San Francisco, 1966).zbMATHGoogle Scholar
  64. 64.
    J. D. Bekenstein, The Relation between Physical and Gravitational Geometry, preprintUCSB-TH-92-41 (November 1992).Google Scholar
  65. 65.
    D. McDuff and D. Salamon, Introduction to Symplectic Topology (Clarendon Press, Oxford, 1998).zbMATHGoogle Scholar
  66. 66.
    I. Bucataru, Metric Nonlinear Connections, math.DG/0412109.Google Scholar
  67. 67.
    M. Crampin, J. London Math. Soc. 2, 178 (1971).CrossRefMathSciNetGoogle Scholar
  68. 68.
    J. Grifone, Ann. Inst. H. Poincaré 22, 287 (1972); 22, 291 (1972).zbMATHMathSciNetGoogle Scholar
  69. 69.
    Yu. N. Orlov, Fundamentals of Quantization of Degenerate Dynamic Systems (MFTI, Moscow, 2004).Google Scholar
  70. 70.
    G. C. McVittie, General Relativity and Cosmology (Chapman and Hall Ltd., London, 1956).Google Scholar
  71. 71.
    I. Bucataru, Some Basic Properties of Lagrangians, math.DG/0507560.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Keldysh Institute of Applied Mathematics of RASMoscowRussia

Personalised recommendations