Gravitation and Cosmology

, Volume 15, Issue 2, pp 129–133 | Cite as

A relativistic two-parameter core-envelope model of compact stars

  • Ramesh TikekarEmail author
  • Kanti Jotania


A core-envelope model for a spherical superdense distribution of matter is reported, with a core consisting of anisotropic fluid engulfed by an envelope containing fluid with isotropic pressure is reported. The background space-time of the whole configuration is characterized by a two-parameter parabolic geometry. The physical plausibility of the model is examined both analytically and numerically, and suitability of the model for describing space-times of superdense stars containing strange matter, such as Her-X1 and SAX, is also discussed.

PACS numbers

04.20.-q 04.20.Jb 04.40.Dg, 97.10.-q 97.60.-s 97.60.Jd 97.90+J 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. X. Xu, Acta Astronomica Sinica 44, 245 (2003).ADSGoogle Scholar
  2. 2.
    M. Ruderman, Ann. Rev. Astron. Astrophys. 10, 427 (1972).CrossRefADSGoogle Scholar
  3. 3.
    V. Canuto, Ann. Rev. Astron. Astrophys. 12, 167 (1974); ibid. 13, 335 (1975).CrossRefADSGoogle Scholar
  4. 4.
    R. L. Bower and E. P. T. Liang, Astrophys. J. 188, 657 (1974).CrossRefADSGoogle Scholar
  5. 5.
    S. S. Bayin, Phys. Rev. D 26, 6 (1982).CrossRefMathSciNetGoogle Scholar
  6. 6.
    S. D. Maharaj and R. Maartens, Gen. Rel. Grav. 21, 899 (1989).CrossRefMathSciNetADSGoogle Scholar
  7. 7.
    R. F. Sawyer, Phys. Rev. Lett. 29, 382 (1972); R. Kippenhahn and A.Weigert, Stellar Structure and Evolution (Springer, Berlin, 1990).CrossRefADSGoogle Scholar
  8. 8.
    A. I. Sokolov, JETP 52, 575 (1980).ADSGoogle Scholar
  9. 9.
    V. Canuto and S. M. Chitre, Phys. Rev. Lett. 30, 999 (1973).CrossRefADSGoogle Scholar
  10. 10.
    J. B. Hartle, R. Sawyer, and D. Scalapino, Astrophys. J. 199, 471 (1995).CrossRefADSGoogle Scholar
  11. 11.
    B. R. Iyer and C. V. Vishveshwara, General Relativistic Aspects of Neutron Star Models, in: A Random Walk in Relativiy and Cosmology, Eds. N. Dadhich, J. Krishna Rao, J. V. Narlikar, and C. V. Vishveshwara (Wiley Eastern Limited, New Delhi, 1985), p. 109.Google Scholar
  12. 12.
    M. C. Sabu, A Study of Some Space-Times of Gravitational Significance, Ph. D. Thesis, Sardar Patel University-Vallabh Vidyanagar, India, pp. 86–95 (1998).Google Scholar
  13. 13.
    R. Tikekar and V. O. Thomas, Pramana J. Phys. 64, 05 (2005).CrossRefADSGoogle Scholar
  14. 14.
    B. C. Paul and R. Tikekar, Grav. Cosmol. 11, 244 (2005).ADSzbMATHGoogle Scholar
  15. 15.
    P. C. Vaidya and R. Tikekar, J. of Astrophys. Astr. 3, 325 (1982).CrossRefADSGoogle Scholar
  16. 16.
    R. Tikekar, J. Math. Phys. 31, 2454 (1990).CrossRefMathSciNetADSzbMATHGoogle Scholar
  17. 17.
    M. R. Finch and J. E. F. Skea, Class. Quantum Grav. 6 467 (1989).CrossRefMathSciNetADSGoogle Scholar
  18. 18.
    R. Tikekar and V. O. Thomas, Pramana J. Phys. 50, 95 (1998).CrossRefADSGoogle Scholar
  19. 19.
    R. Tikekar and K. Jotania, Int. J. Mod. Phys. D 14, 1037 (2005).CrossRefADSGoogle Scholar
  20. 20.
    X.-D. Li, I. Bombaci, M. Dey, and E. P. J. van den Heuvel, Phys. Rev. Lett. 83, 3776 (1999).CrossRefADSGoogle Scholar
  21. 21.
    R. Sharma and S. Mukherjee, Mod. Phys Lett. A 16, 049 (2001); R. Sharma, S. Mukherjee, M. Dey, and J. Dey, Mod. Phys Lett. A 17, 827 (2002).CrossRefGoogle Scholar
  22. 22.
    K. Jotania and R. Tikekar, Int. J. Mod. Phys. D 15, 1175 (2006).CrossRefADSzbMATHGoogle Scholar
  23. 23.
    T. Shahbaz, J. Casares, C. A. Watson, P. A. Charles, R. I. Hynes, S. C. Shih, and D. Steeghs, Astrophys. J. 616, L123 (2004).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Department of MathematicsSardar Patel UniversityVallabh VidyanagarIndia
  2. 2.Physics Department, Faculty of ScienceThe Maharaja Sayajirao University of BarodaVadodaraIndia

Personalised recommendations