Gravitation and Cosmology

, Volume 15, Issue 1, pp 44–48 | Cite as

Active galactic nuclei and transformation of dark matter into visible matter

Article

Abstract

The hypothesis that dark matter is converted into visible particles in active galactic nuclei is investigated. If dark matter consists of stable superheavy neutral particles and active galactic nuclei are rotating black holes, then, due to the Penrose process, superheavy particles can decay into unstable particles with large mass, whose decay into quarks and leptons leads to events in cosmic rays observed by the Auger group. Similar processes of decay of superheavy particles of dark matter into visible matter occurred in the early Universe. Numerical estimates of the processes in active galactic nuclei and in the early Universe are given.

PACS numbers

98.80.Cq 95.35.+d 98.70.Sa 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    The Pierre Auger Collaboration, Science 318, 938 (2007).CrossRefADSGoogle Scholar
  2. 2.
    A. A. Grib and Yu. V. Pavlov, Mod. Phys. Lett. A 23, 1151 (2008).MATHCrossRefADSGoogle Scholar
  3. 3.
    A. A. Grib and Yu. V. Pavlov, Int. J. Mod. Phys. D 11, 433 (2002); Int. J.Mod. Phys. A 17, 4435 (2002); Gravit. & Cosmology 8 Suppl., 148 (2002); Gravit. & Cosmology 12, 159 (2006).CrossRefADSGoogle Scholar
  4. 4.
    V. K. Dubrovich and M. Yu. Khlopov, JETP Lett. 77, 335 (2003).CrossRefADSGoogle Scholar
  5. 5.
    A. A. Grib, S.G. Mamayev, and V.M. Mostepanenko, Vacuum Quantum Effects in Strong Fields (Friedmann Lab. Publ., St. Petersburg, 1994).Google Scholar
  6. 6.
    A. A. Grib and V. Yu. Dorofeev, Int. J. Mod. Phys. D 3, 731 (1994).CrossRefADSGoogle Scholar
  7. 7.
    R. Penrose, Rivista Nuovo Cimento I, Num. Spec., 252 (1969).Google Scholar
  8. 8.
    K. Greisen, Phys. Rev. Lett. 16, 748 (1966); G. T. Zatsepin and V. A. Kuzmin, JETP Lett. 4, 78 (1966).CrossRefADSGoogle Scholar
  9. 9.
    Ya. B. Zel’dovich and I.D. Novikov, Gravitation Theory and Stars Evolution (Nauka, Moscow, 1971).Google Scholar
  10. 10.
    J. F. Navarro, C. S. Frenk, and S. D. M. White, Astrophys. J. 462, 563 (1996).CrossRefADSGoogle Scholar
  11. 11.
    R. Aloisio, V. Berezinsky, and M. Kachelriess, Phys. Rev. D 74, 023516 (2006).Google Scholar
  12. 12.
    Astrophysics of Cosmic Rays, Ed. by V. L. Ginzburg (Nauka, Moscow, 1990).Google Scholar
  13. 13.
    S. Chandrasekhar, The Mathematical Theory of Black Holes (Oxford, Oxford Univ. Press, 1983).MATHGoogle Scholar
  14. 14.
    L. H. Ford, Nucl. Phys. B 204, 35 (1982).CrossRefADSGoogle Scholar
  15. 15.
    A. A. Grib and Yu. V. Kryukov, Yadernaya Fizika 48, 1842 (1988) [Engl. transl. in Sov. J. Nucl. Phys. (USA) 48, 1109 (1988)].Google Scholar
  16. 16.
    V. Berezinsky, P. Blasi, and A. Vilenkin, Phys. Rev. D 58, 103515 (1998).Google Scholar
  17. 17.
    H. V. Klapdor-Kleingrothaus and K. Zuber, Particle Astrophysics (Institute of Physics, Bristol, 1997).MATHGoogle Scholar
  18. 18.
    M. Gell-Mann, P. Ramond, and S. Slansky, in Supergravity, Ed. by P. van Niewenhuizen and D. Z. Freedman (Noth Holland, Amsterdam, 1979), pp. 315–321.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.A. Friedmann Laboratory for Theoretical PhysicsSt. PetersburgRussia
  2. 2.Russian State Pedagogical University (The Herzen University)St. PetersburgRussia
  3. 3.Institute of Mechanical EngineeringRussian Acad. Sci.St. PetersburgRussia

Personalised recommendations