Advertisement

Gravitation and Cosmology

, Volume 15, Issue 1, pp 20–27 | Cite as

Gravitational radiospectrometer

  • G. S. Bisnovatyi-KoganEmail author
  • O. Yu. Tsupko
Article

Abstract

Gravitational lensing is predicted by general relativity and is found in observations. When a gravitating body is surrounded by a plasma, the lensing angle depends on the frequency of the electromagnetic wave due to refraction properties, and the dispersion properties of light propagation in the plasma. The last effect leads to a frequency dependence, even in the uniform plasma, of the lensing angle, which resembles the properties of a refractive prism spectrometer. The strongest action of this spectrometer is for the frequencies slightly exceeding the plasma frequency, which corresponds to very long radiowaves.

PACS numbers

04.20.-q 04.20.Cv 95.30.Sf 41.20.Jb 42.15.-i 98.62.Sb 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. S. Bisnovatyi-Kogan and O. Yu. Tsupko, Grav. Cosmol. 14, 226 (2008).zbMATHCrossRefADSGoogle Scholar
  2. 2.
    P. V. Bliokh and A. A. Minakov, Gravitational Lenses (Naukova Dumka, Kiev, 1989) (in Russian).Google Scholar
  3. 3.
    S. Ya. Braude, A. V. Megn, S. L. Rashokovski, B. P. Ryabov, N. K. Sharykin, K. P. Sokolov, A. P. Tkatchenko, and I. N. Zhouk, The UTR-2 Very Low-Frequency Sky Survey Data (Braude+ 1978–2002), VizieR On-line Data Catalog (2007).Google Scholar
  4. 4.
    T. Damour and G. Esposito-Farèse, Phys. Rev. D 58, 042001 (1998).Google Scholar
  5. 5.
    V. Faraoni, Astroph. J. 398, 425 (1992).CrossRefADSGoogle Scholar
  6. 6.
    V. A. Fok, Theory of Space, Time, and Gravitation (Moscow, 1955) (in Russian).Google Scholar
  7. 7.
    V. L. Ginzburg, The Propagation of Electromagnetic Waves in Plasmas (International Series of Monographs in Electromagnetic Waves, Pergamon, Oxford, 1970).Google Scholar
  8. 8.
    I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Sums, and Products (Nauka, Moscow, 1971) (in Russian).Google Scholar
  9. 9.
    L. D. Landau and E.M. Lifshitz, Electrodynamics of Continuous Media, Course of Theoretical Physics (Pergamon Press, Oxford, 1960).Google Scholar
  10. 10.
    L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Pergamon, Oxford, 1993).Google Scholar
  11. 11.
    C. Møler, The Theory of Relativity (Clarendon Press, Oxford, 1972).Google Scholar
  12. 12.
    D.O. Muhleman and I.D. Johnston, Phys. Rev. Lett. 17(8), 455 (1966).CrossRefADSGoogle Scholar
  13. 13.
    D. O. Muhleman, R. D. Ekers, and E. B. Fomalont, Phys. Rev. Lett. 24, 24, 1377 (1970).CrossRefGoogle Scholar
  14. 14.
    T.W. Noonan, Astroph. J. 262, 344 (1982).CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    P. Schneider, J. Ehlers, and E. Falco, Gravitational Lensing (Springer-Verlag, Berlin, 1992).Google Scholar
  16. 16.
    J. L. Synge, Relativity: the General Theory (North-Holland Publishing Company, Amsterdam, 1960).zbMATHGoogle Scholar
  17. 17.
    V. V. Zhelezniakov, ElectromagneticWaves in Space Plasma: Generation and Propagation (Nauka, Moscow, 1977) (in Russian).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Space Research Institute of Russian Academy of ScienceMoscowRussia
  2. 2.Joint Institute for Nuclear ResearchDubnaRussia
  3. 3.Moscow Engineering Physics InstituteMoscowRussia

Personalised recommendations