Gravitation and Cosmology

, Volume 14, Issue 4, pp 368–375 | Cite as

Status of the experiments on measurement of the Newtonian gravitational constant

  • V. K. MilyukovEmail author
  • Jun Luo
  • Chen Tao
  • A. P. Mironov


Due to the weakness of gravity, the accuracy of the Newtonian gravitational constant G is essentially below the accuracy of other fundamental constants. The current value of G, recommended by CODATA in 2006, based on all results available at the end of 2006, is G = (6.67428 ± 0.00067) × 10−11 m3 kg−1 s−2 with a relative error of 100 ppm. The accuracy of the best experimental results is 15–40 ppm, although the scatter of the results is large enough. Therefore new experiments at a level of accuracy of 10–30 ppm are rather topical. One of the problems of improving accuracy of G is a precision measurement of the period of eigen oscillations of a torsion balance. The nonlinear behavior of the torsion balance with five degrees of freedom has been studied. It was shown that swing modes are excited by the acting environmental noise. A coupling of the swing modes to the torsional mode has been revealed. Methods of suppressing the effect of mode couplings have been considered.

PACS numbers

04.80.Cc 02.60.Cb 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. R. Heyl, A redetermination of the constant of gravitation, J. Res. Natl. Bur. Stand. 5(256), 1243 (1930).Google Scholar
  2. 2.
    C. Pontikis, Détermination de la constante de gravitation par la méthode de résonance, C. R. Acad. Sci. Ser. B 274, 437 (1972).Google Scholar
  3. 3.
    M. U. Sagitov, V. K. Milyukov, et al., A new determination of the Cavendish gravitational constant, Dokl. Akad. Nauk SSSR 245(3), 567 (1979) [Sov. Phys. Dokl. 245 (1–6), 20 (1981)].ADSGoogle Scholar
  4. 4.
    G. G. Luther and W. R. Towler, Redetermination of the Newtonian gravitational constant G, Phys. Rev. Lett. 48, 121 (1982).CrossRefADSGoogle Scholar
  5. 5.
    G. Gilles, The Newtonian constant, Metrologia 24(Supplement), 56 (1987).ADSGoogle Scholar
  6. 6.
    W. Michaelis et al., A new precise determination of Newton’s gravitational constant, Metrologia 32,267 (1996).CrossRefADSGoogle Scholar
  7. 7.
    O. V. Karagioz and V. P. Izmailov, Measurement of the gravitational constant with a torsion balance, Izmer. Tekh. 39(10), 3 (1996) [Meas. Tech. 39 (10), 979 (1996)].Google Scholar
  8. 8.
    C. H. Bagley and G. G. Luther, Preliminary results of a determination of the Newtonian constant of gravitation: A test of the Kuroda hypothesis, Phys. Rev. Lett. 78(16), 3047 (1997).CrossRefADSGoogle Scholar
  9. 9.
    M. P. Fitzgerald and T. R. Armstrong, The measurement of G using the MSL torsion balance, Meas. Sci. Technol. 10(6), 439 (1999).CrossRefADSGoogle Scholar
  10. 10.
    J. Luo et al., Determination of the Newtonian gravitational constant G with a nonlinear fitting method, Phys. Rev. D 59, 042001 (1999).Google Scholar
  11. 11.
    P. Mohr, Quantum electrodynamics and the fundamental constants, Advances in Quantum Chemistry 30, 77 (1998).CrossRefGoogle Scholar
  12. 12.
    J. H. Gundlach and S. M. Merkowich, Measurement of Newton’s constant using a torsion balance with angular acceleration feedback, Phys. Rev. Lett. 85, 2869 (2000).CrossRefADSGoogle Scholar
  13. 13.
    T. J. Quinn, C. C. Speake, S. J. Richmann, et al., A new determination of G using two methods, Phys. Rev. Lett. 87, 111101 (2001).Google Scholar
  14. 14.
    St. Schlamminger, E. Holzschuh, and W. Kundig, Determination of the gravitational constant with a beam balance, Phys. Rev. Lett. 89, 161102 (2002).Google Scholar
  15. 15.
    P. J. Mohr and B. N. Taylor, CODATA recommended values of the fundamental physical constants: 2002, Rev. Mod. Phys. 77(1), 1 (2005).CrossRefADSGoogle Scholar
  16. 16.
    T. R. Armstrong and M. P. Fitzgerald, New measurement of G using the measurement laboratory torsion balance, Phys. Rev. Lett. 91(20), 201101 (2003).Google Scholar
  17. 17.
    St. Schlamminger et al., Measurement of Newton’s gravitational constant, Phys. Rev. D 74, 082001 (2006).Google Scholar
  18. 18.
    K. Kuroda, Does the time-of-swing method give a correct value of the Newtonian gravitational constant?, Phys. Rev. Lett. 75(15), 2796 (1995).CrossRefADSGoogle Scholar
  19. 19.
    V. K. Milyukov, The theory of motion of the torsion balance in inhomogeneous gravitational field under the action of random noise. In: Problems of Gravitation and Elementary Particle Theory, (Energoizdat, Moscow, 1981), 12th issue, p. 128 (in Russian).Google Scholar
  20. 20.
    X.-D. Fan et al., Coupled modes of the torsion pendulum, Phys. Lett. A, doi: 10.1016/j.physleta.2007.08.020 (2007).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • V. K. Milyukov
    • 1
    Email author
  • Jun Luo
    • 2
  • Chen Tao
    • 1
  • A. P. Mironov
    • 1
  1. 1.Sternberg Astronomical InstituteMoscow State UniversityMoscowRussia
  2. 2.Department of PhysicsHuazhong University of Science and TechnologyWuhanPeople’s Republic of China

Personalised recommendations