Gravitation and Cosmology

, Volume 14, Issue 4, pp 314–320 | Cite as

Space-time description of scalar particle creation by a homogeneous isotropic gravitational field

Article

Abstract

We give a generalization of the method of the space-time description of particle creation by a gravitational field for a scalar field with nonconformal coupling to the curvature. The space-time correlation function is obtained for a created pair of the quasi-particles, corresponding to a diagonal form of the instantaneous Hamiltonian. The case of an adiabatic change of the metric of homogeneous isotropic space is analyzed. We show that the created pairs of quasi-particles in de Sitter space should be interpreted as pairs of virtual particles.

PACS numbers

04.62.+v 03.70.+k 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Grib, S. G. Mamayev, and V. M. Mostepanenko, Vacuum Quantum Effects in Strong Fields (Energoatomizdat, Moscow, 1988; Friedmann Lab. Publ., St. Petersburg, 1994).Google Scholar
  2. 2.
    N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space (Cambridge Univ. Press, Cambridge, 1982).MATHGoogle Scholar
  3. 3.
    A. A. Grib and Yu. V. Pavlov, Int. J. Mod. Phys. D 11, 433 (2002); Int. J. Mod. Phys. A 17, 4435 (2002); Grav. Cosmol. 12, 159 (2006); Grav. Cosmol. 14, 1 (2008).CrossRefADSGoogle Scholar
  4. 4.
    A. A. Grib and S. G. Mamayev, Yadernaya Fizika 10, 1276 (1969); Sov. J. Nucl. Phys. 10, 722 (1970).Google Scholar
  5. 5.
    S. G. Mamayev and N. N. Trunov, Yadernaya Fizika 37, 1603 (1983); Sov. J. Nucl. Phys. 37, 952 (1983).Google Scholar
  6. 6.
    V. B. Bezerra, V. M. Mostepanenko, and C. Romero, Int. J. Mod. Phys. D 7, 249 (1998).MATHCrossRefADSMathSciNetGoogle Scholar
  7. 7.
    M. Bordag, J. Lindig, V. M. Mostepanenko, and Yu. V. Pavlov, Int. J. Mod. Phys. D 6, 449 (1997).MATHCrossRefADSMathSciNetGoogle Scholar
  8. 8.
    L. P. Grishchuk and V. M. Yudin, J. Math. Phys. 21, 1168 (1980).CrossRefADSGoogle Scholar
  9. 9.
    X. S. Mamaeva and N. N. Trunov, Teor.Mat. Fiz. 135, 82 (2003); Theor. Math. Phys. 135, 520 (2003).MathSciNetGoogle Scholar
  10. 10.
    Yu. V. Pavlov, Teor. Mat. Fiz. 126, 115 (2001) [Theor. Math. Phys. 126, 92 (2001)].Google Scholar
  11. 11.
    S. A. Fulling, Rel. Grav. 10, 807 (1979).MATHCrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Yu. V. Pavlov, Teor. Mat. Fiz. 140, 241 (2004) [Theor. Math. Phys. 140, 1095 (2004)].Google Scholar
  13. 13.
    C. Lanczos, Ann. Math. 39, 842 (1938).CrossRefMathSciNetGoogle Scholar
  14. 14.
    Yu. V. Pavlov, Int. J. Mod. Phys. A 17, 1041 (2002).CrossRefADSGoogle Scholar
  15. 15.
    T. D. Newton and E. P. Wigner, Rev. Mod. Phys. 21, 400 (1949).MATHCrossRefADSGoogle Scholar
  16. 16.
    S. S. Schweber, An Introduction to Relativistic Quantum Field Theory (Row, Peterson and Co, New York, 1961).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  1. 1.A. Friedmann Laboratory for Theoretical PhysicsSt. PetersburgRussia
  2. 2.Institute of Mechanical EngineeringRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations