Advertisement

Gravitation and Cosmology

, Volume 14, Issue 3, pp 241–247 | Cite as

Embeddings for 4D Einstein equations with a cosmological constant

  • J. Ponce de LeonEmail author
Article

Abstract

There are many ways of embedding a 4D spacetime in a given higher-dimensional manifold while satisfying the field equations. In this work, we extend and generalize a recent paper by Mashhoon and Wesson (Gen. Rel. Grav. 39, 1403 (2007)) by showing different ways of embedding a solution to the 4D Einstein equations in vacuum with a cosmological constant, in a Ricci-flat as well as anti-de Sitter 5D manifold. These embeddings lead to different physics in 4D, in particular, to non-equivalent cosmological terms as functions of the extra coordinate. We study themotion of test particles for different embeddings and show that there is a complete equivalence between several definitions of the effective mass of test particles measured in 4D, obtained from different theoretical approaches like the Hamilton-Jacobi formalism and the least action principle. For the case under consideration, we find that the effective mass observed in 4D is the same regardless of whether we consider null or non-null motion in 5D.

PACS numbers

04.50.+h 04.20.Cv 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Rippl, C. Romero, and R. Tavakol, Class.Quantum Grav. 12, 2411 (1995); gr-qc/9511016.zbMATHCrossRefMathSciNetADSGoogle Scholar
  2. 2.
    J. E. Lidsey, C. Romero, R. Tavakol, and S. Rippl, Class. Quantum Grav. 14, 865 (1997); grqc/9907040.zbMATHCrossRefMathSciNetADSGoogle Scholar
  3. 3.
    F. Dahia and C. Romero, J. Math. Phys. 43, 5804 (2002); gr-qc/0109076.zbMATHCrossRefMathSciNetADSGoogle Scholar
  4. 4.
    S. S. Seahra and P. S. Wesson, Class. Quantum Grav. 20, 1321 (2003); gr-qc/0302015.zbMATHCrossRefMathSciNetADSGoogle Scholar
  5. 5.
    P. S. Wesson, In Defense of Campbell’s Theorem as a Frame for New Physics, gr-qc/0507107.Google Scholar
  6. 6.
    J. Ponce de Leon, Class. Quantum Grav. 23, 3043 (2006); gr-qc/0512067.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    C. Germani and R. Maartens, Phys. Rev. D 64, 124010 (2001); hep-th/0107011.Google Scholar
  8. 8.
    M. Bruni, C. Germani, and R. Maartens, Phys. Rev. Lett. 87, 231302 (2001); gr-qc/0108013.Google Scholar
  9. 9.
    G. Kofinas and E. Papantonopoulos, J. Cosmol. Astropart. Phys. 12, 11 (2004); gr-qc/0401047.CrossRefMathSciNetADSGoogle Scholar
  10. 10.
    N. Dadhich, R. Maartens, P. Papadopoulos, and V. Rezania, Phys. Lett. B 487, 1 (2000); hepth/0003061v3.zbMATHCrossRefMathSciNetADSGoogle Scholar
  11. 11.
    R. Casadio, A. Fabbri, and L. Mazzacurati, Phys. Rev. D 65, 084040 (2002); gr-qc/0111072v2.Google Scholar
  12. 12.
    M. Visser and D. L. Wiltshire, Phys. Rev. D 67, 104004 (2003); hep-th/0212333v2.Google Scholar
  13. 13.
    K. A. Bronnikov, H. Dehnen, and V. N. Melnikov, Phys. Rev. D 68, 024025 (2003); gr-qc/0304068.Google Scholar
  14. 14.
    J. Ponce de Leon, Grav. Cosmol. 14, 65 (2008)CrossRefMathSciNetADSGoogle Scholar
  15. 15.
    B. Mashhoon and P. Wesson, Gen. Rel. Grav. 39, 1403 (2007); arXiv: 0705.0067.zbMATHCrossRefMathSciNetADSGoogle Scholar
  16. 16.
    J. M. Overduin and P. S. Wesson, Phys. Rept. 283, 303 (1997); gr-qc/9805018.CrossRefMathSciNetADSGoogle Scholar
  17. 17.
    L. Randall and S. Sundrum, Phys. Rev. Lett. 83, 4690 (1999); hep-th/9906064.zbMATHCrossRefMathSciNetADSGoogle Scholar
  18. 18.
    J. Ponce de Leon, Int. J. Mod. Phys. D 12, 757 (2003); gr-qc/0209013.zbMATHCrossRefMathSciNetADSGoogle Scholar
  19. 19.
    J. Ponce de Leon, Gen. Rel. Grav. 36, 1333 (2004); gr-qc/0310078.Google Scholar
  20. 20.
    J. Ponce de Leon, Mod. Phys. Lett. A 23, 249 (2008).zbMATHCrossRefMathSciNetADSGoogle Scholar
  21. 21.
    J.M. Overduin, P. S. Wesson, and B. Mashhoon, Astron. Astrophys. 473, 727 (2007); arXiv:0707.3148.zbMATHCrossRefADSGoogle Scholar
  22. 22.
    P. S. Wesson, Space-Time-Matter (World Scientific, 1999).Google Scholar
  23. 23.
    B. Mashhoon, H. Liu and P. S. Wesson, Phys. Lett. B 331, 305 (1994).CrossRefADSGoogle Scholar
  24. 24.
    P. S. Wesson, J. Math. Phys. 43, 2423 (2002); grqc/0105059.zbMATHCrossRefMathSciNetADSGoogle Scholar
  25. 25.
    B. Mashhoon and P. S. Wesson, Class. Quantum Grav. 21, 3611 (2004); gr-qc/0401002.zbMATHCrossRefMathSciNetADSGoogle Scholar
  26. 26.
    S. S. Seahra and P. S. Wesson, Gen. Rel. Grav. 33 1731 (2001); gr-qc/0105041.zbMATHCrossRefMathSciNetADSGoogle Scholar
  27. 27.
    J. Ponce de Leon, Mod. Phys. Lett. A 16, 2291 (2001); gr-qc/0111011.CrossRefMathSciNetADSGoogle Scholar
  28. 28.
    T. Shiromizu, K. Maeda, and M. Sasaki, Phys. Rev. D 62, 024012 (2000); gr-qc/9910076.Google Scholar
  29. 29.
    H. V. Peiris, E. Komatsu, L. Verde, D. N. Spergel, C. L. Bennett, M. Halpern, G. Hinshaw, N. Jarosik, A. Kogut, M. Limon, S. Meyer, L. Page, G. S. Tucker, E. Wollack, and E. L. Wright, Astrophys. J. Suppl. 148, 213 (2003); astro-ph/0302225.CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  1. 1.Laboratory of Theoretical Physics, Department of PhysicsUniversity of Puerto RicoSan JuanUSA

Personalised recommendations